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Abstract

We develop a practical method for estimating and decomposing conditional average
treatment effects using locally-weighted regressions. We illustrate with an applica-
tion to the smoking ban in England using a regression discontinuity design, based on
Health Survey for England data. We estimate average treatment effects conditional on
socioeconomic status and decompose these effects by smoking location. Results show,
the ban had no effect on the level of active smoking, but significantly reduced aver-
age exposure to second-hand smoke among non-smokers by 1.38 hours per week. Our
method reveals a complex relationship between socioeconomic status and the effect on
passive smoking. Decomposition analysis shows that these effects stem primarily from
exposure reductions in pubs, but also from workplace exposure reductions for high
socioeconomic status individuals.
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1 Introduction

Researchers often estimate average treatment effects when evaluating policies. While useful,

such analysis does not provide information about how treatment effects vary for individ-

uals with different characteristics. This makes it hard to assess the impact of policies on

inequalities. To overcome this, methods that estimate treatment effects conditional on char-

acteristics of interest are needed. Existing methods can, however, be imprecise, inflexible or

inaccessible. This paper aims to provide a precise and flexible method that allows for the

disaggregation of average treatment effects while maintaining accessibility and ease-of-use.

Using this, the impact of policies on inequalities in society can be more easily estimated and

better understood.

We therefore develop a practical econometric method for estimating and decomposing

conditional average treatment effects using locally-weighted regressions. This allows complex

relationships between treatment effects and conditioning variables to be estimated and the

potential reasons behind these relationships to be explored. To allow others to use our

method we provide a flexible Stata program: lwcate. We illustrate our method with an

application to the smoking ban in England. We estimate the causal effects of the ban on both

active and passive smoking using a regression discontinuity design based on individual-level

data from the Health Survey for England. Treatment effects are then estimated conditional

on socioeconomic status and decomposed by detailed smoking location variables.

An extensive literature focuses on the estimation of causal treatment effects. Rubin (1974)

defines causal effects at the individual level as the difference in the potential outcomes an

individual would have had with and without treatment. If researchers knew these individ-

ual casual effects, they could both identify the distribution of individual effects and aggre-

gate these effects to estimate ‘typical’ causal effects on the population. It is, however, not

possible to simultaneously observe the potential outcomes of an individual both with and

without treatment. Therefore, researchers often use experiments, natural experiments or

quasi-experiments where individuals are randomly or “as-if” randomly assigned to control

and treatment groups.1 By taking the difference in expected outcomes between these groups

the Average Treatment Effect (ATE) can be estimated.2

1Experiments are where the researcher intentionally to groups while assignment in natural or quasi-
experiments is either unintentionally randomised or non-randomised. Examples of the former include ran-
domised controlled trails and incentivised laboratory experiments, while regression discontinuities, difference-
in-differences and interrupted time-series are examples of the later two.

2Much literature surrounding ATEs addresses issues of compliance and selection into treatment. With
distinct effects such as: the Average Treatment Effect of the Treated (ATT), Local Average Treatment
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The ATE provides a useful summary of the ‘typical’ effect on the population. How-

ever, by focusing solely on the ATE researchers omit considerations of the distribution of

individual treatment effects. The impact that any heterogeneity in individual effects has

upon existing inequalities would, therefore, not be accounted for. Much other literature is,

however, concerned with estimating heterogeneity in casual effects.3 By estimating causal

effects conditional on observable characteristics of interest, x̃, heterogeneity of treatment

effects across levels of x̃ is allowed for. In particular, Conditional Average Treatment Effects

(CATEs) estimate the expected effect of the treatment on the outcome for individuals with

a specific level of x̃.4 This allows researchers to identify the effects of policies on inequalities

in the outcome, where the outcome is associated with x̃.

Standard methods for estimating CATEs involve stratification or interactions. If charac-

teristics are discrete (e.g. sex) stratification is effective. But if characteristics are continuous

(e.g. income or age) they are often either made discrete, and estimated using stratification,

or are (parametrically) interacted with the treatment effect. For stratification, the setting of

bounds is often arbitrary and too few discrete categories lead to bias, while too many lead

to imprecision. For interactions, if the order of the parametric interaction assumed is too

low the method is inflexible, leading to bias.

More nuanced methods of estimating CATEs (when x̃ is continuous) often use semi-

parametric and non-parametric models (see Abrevaya, Hsu, and Lieli (2015) and S. Lee,

Okui, and Whang (2017)). These methods, using kernel (Nadaraya, 1964; Watson, 1964) or

local-linear regressions (Cleveland, 1979; Cleveland and Devlin, 1988), make no assumptions

about the parametric form of the relationship between the CATEs and x̃. This allows for a

smooth and flexible estimation of the potentially complex relation between CATEs and x̃,

while maintaining precision.

Our proposed method similarly provides non-parametric estimates of CATEs, but is

distinct from the previous literature as to do so it estimates locally-weighted regressions

conditional on the quantile(s) of the observable variable(s) of interest, q(x̃). It provides

Effects (LATEs) and Marginal Treatment Effects (MTEs) (see J. J. Heckman and Robb Jr (1985); Imbens
and Angrist (1994); Björklund and Moffitt (1987) and Cornelissen et al. (2016) for a review). In our setting
these concerns over selection, and selection due to unobservables, are not of central importance. The sharp
regression discontinuity design used to estimate the causal effects of the ban assumes there is no unobservable
selection into treatment and that all individuals are subject to the ban.

3See Bedoya et al. (2017) for an extensive review of methods and a practical toolkit.
4Related literature which refers to CATEs are Hahn (1998); J. Heckman, Ichimura, and P. E. Todd (1997);

J. Heckman, Ichimura, and P. Todd (1998); and Khan and Tamer (2010). MaCurdy, Chen, and Hong (2011)
discuss the identification of CATEs, while Chang, S. Lee, and Whang (2015) and Hsu (2017) develop formal
tests for CATEs.
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coefficient estimates β̂(x̃), for all X variables within the regression model, conditional on x̃; of

which the CATE, β̂τ(x̃), is one coefficient. The general form allows for kernel, local-linear and

local-polynomial models, which use weights from either Beta, Uniform, Normal, Triangular or

Epanechnikov distributions.5 This approach is primarily developed for experiments, natural

experiments and quasi-experiments, where additional X variables may need to be included to

enable the estimation of β̂τ (x̃). We provide a flexible and easy-to-use Stata program (lwcate)

to enable other researchers to use our method. The command estimates individual-level

coefficients, plots CATEs and predicts potential outcomes.

In addition to this, we conduct decomposition analysis to provide insight into the rea-

sons underlying the estimated causal effects. Decomposition analysis is a strand of literature

where differences between groups are broken into component parts. Stemming from two

seminal papers (Blinder, 1973; Oaxaca, 1973) the Oaxaca-Blinder decomposition identifies

the endowment, coefficient and unexplained components, in order to understand average

differences better. When the two groups concerned are control and treated groups, as

S loczyński (2015) shows, the average treatment effect can be similarly decomposed. We

follow this approach but apply it to the regression discontinuity framework.

Taking inspiration from Machado and Mata (2005); Melly (2005); and Chernozhukov,

Fernández-Val, and Melly (2013), who decompose differences conditional on the quantiles or

levels of the outcome variable, we decompose CATEs, which are conditional on the level of

an explanatory variable. This allows the heterogeneity in CATEs to be better understood,

as the underlying components of these effects are also estimated conditionally. This sheds

light on the reasons behind any observed heterogeneity. Knowing these reasons could prove

useful for future policy: allowing for the prevention of further unintentional heterogeneity.

We apply our methods to the smoking ban, which was introduced by the UK government

across England in July 2007. The ban effectively prohibited the smoking of tobacco in

enclosed public places, including workplaces and places where the public accessed goods

and services, including public transport, private clubs and pubs. Exemptions were allowed

for psychiatric units, nursing homes, prisons and other specified public places. Those who

breached the ban were subject to fines, up to £200 for individuals and £2,500 for businesses.

Early evaluations of the smoking ban found that it was successful in reducing exposure

to second-hand smoke in public places but had limited impact on tobacco consumption,

5While the Uniform, Normal, Triangular or Epanechnikov are standard in the literature, we propose
and formulate the Beta distribution as an alternative. It is particularly suited to our quantile approach and
avoids issues of bias at the extremes.
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suggesting that smokers changed the locations where they smoked but not the amount.

Evidence shows that quit rates for smokers were increasing prior to the ban but remained

low, at less than 3% per year. Interviews with high cardiovascular risk smokers in Scotland

suggest introduction of the ban was associated with a small short-term increase in quit

rates but this was not sustained (Fowkes et al., 2008). Difference-in-differences studies also

found very limited short-run effects on smoking prevalence and total level of smoking (J. Lee,

Glantz, and Millett, 2011; Jones et al., 2015). In contrast, smokers reported substantial drops

in smoking at work (from 14% to 2%) and in pubs (from 34% to 2%), locations covered by

the primary legislation, but also inside the home (from 65% to 55%), which was not covered

(J. Lee, Glantz, and Millett, 2011). This contrasts with evidence from the US, where reduced

exposure in public places following smoking bans was accompanied by increased exposure in

private areas due to substitution (Adda and Cornaglia, 2010).

The evidence on the equity impacts of smoking bans is less clear. Because smoking

prevalence and second-hand exposure is higher in more deprived groups, legislation which

restricts smoking has the potential to reduce socioeconomic inequalities in health. However,

Sims et al. (2011) show that although the ban reduced second-hand smoke exposure amongst

non-smokers, significant reductions were not found for lower social class households. A review

of the impacts on socioeconomic inequalities in health of national smoking strategies found

only six studies based on comprehensive national/state smoke free legislation; two reported

equity neutral results and four reported a negative impact (Brown, Platt, and Amos, 2014).

All UK studies reported overall reductions in second-hand exposure for children but in Wales

and Northern Ireland this was concentrated in higher socioeconomic groups (G. Moore,

Holliday, and L. Moore, 2011; G. Moore, Currie, et al., 2012; Jarvis et al., 2012) In Scotland

higher absolute reductions for lower socioeconomic groups still resulted in relative increases

in inequalities between socioeconomic groups (Akhtar et al., 2010).

This paper contributes to the methodological literature surrounding the estimation of

causal treatment effects and to applied research on smoking and health inequalities. We

develop a novel econometric method to estimate and decompose conditional average treat-

ment effects using locally-weighted regressions and provide a flexible, easy to use, program

in Stata. We further estimate causal effects for both active and passive smoking in England;

estimating and decomposing these treatment effects, conditional on socioeconomic status.

The remainder of the paper is organised in six main sections. Methods formulates the

potential outcomes framework (2.1), regression discontinuity design (2.2), conditional av-

erage treatment effects estimator (2.3) and decomposition analysis (2.4). Data describes
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the survey (3.1), explains the derivation of the socioeconomic status variable (3.2), shows

descriptive statistics (3.3) and plots smoking outcomes over time (3.4). Then, Results show

estimates for average treatment effects (4.1) and conditional average treatment effects (4.2).

Active smoking behaviour (4.3) and passive smoking exposure (4.4) are then investigated

in more detail, providing counterfactual predictions, decomposition analysis and conditional

decomposition analysis. Following that are the Discussion, Conclusion and Appendix .

2 Methods

2.1 Potential Outcomes Framework

To provide cohesion and an overarching framework to the below methods, the potential

outcomes framework is used. For a population of N individuals we observe actual outcomes

y. We also observe D which shows if an individual is in the control group (D = 0) or

in the treatment group (D = 1). We can imagine the potential outcomes an individual

would have if an individual were in the control group, with Y(0), or in the treatment group,

with Y(1). It is D which determines whether the potential outcome for an individual is

observable or counterfactual (i.e. not observable). If D = 0 then Y (0) is observable and

Y (1) is counterfactual, and vice versa for D = 1. The outcome we observe, y, can therefore

be written as follows:

y = Y(0)(1−D) + Y(1)D (1)

The effect of receiving the treatment, for one individual, would be the difference in

their potential outcomes in the control and treatment group: τI = Y (1) − Y (0). These

individual causal effects can be aggregated to establish the ‘typical’ effects of the treatment.

The Average Treatment Effect (ATE), τA, is the expected difference in potential outcomes,

across the whole sample, while the Conditional Average Treatment Effect (CATE), τC(x̃),

is the expected difference in potential outcomes for a particular sub-sample, identified by x̃:

τA = E[τ I ] = E[Y(1)−Y(0)] (2)

τC(x̃) = E[τ I |X̃ = x̃] = E[Y(1)−Y(0)|X̃ = x̃] (3)

Just as the ‘typical’ effects can be seen as the aggregation of individual effects, causal

effects can be seen as the aggregation of separate components. For example, let the outcome,

6



y be the number of cigarettes smoked. This could be split into two components, the number

smoked at home (A) and the number smoked elsewhere (B), as shown below. If a policy aimed

at reducing the number of cigarettes smoked, it might be of interest to decompose the ‘total’

treatment effect into two such component parts. The causal effect of the policy in reducing

the number of cigarettes smoked at home (Component A) and elsewhere (Component B).

This decomposition could be generalised to any number of components and elicited at either

the individual, average or conditional average level. Indeed, if individual or conditional

causal effects were heterogeneous, this decomposition may shed light onto the underlying

reasons for such heterogeneity.

y = (YA(0) + YB(0))(1−D) + (YA(1) + YB(1))D (4)

τI = (YA(1)− YA(0))︸ ︷︷ ︸
ComponentA

+ (YB(1)− YB(0))︸ ︷︷ ︸
ComponentB

(5)

Unfortunately, it is not possible to observe counterfactual outcomes, therefore treatment

effects and counterfactual outcomes need to be estimated. The following sections present the

estimation procedures for the above. Section 2.2 shows the regression discontinuity design

used to estimate the ATE, τA. Section 2.3 proposed a method to non-parametrically esti-

mate CATEs, τC(x̃). Section 2.4 formulates the method to decompose ATEs, then Section

2.5 extends this to decompose CATEs. Through each of these methods not only are the

causal effects estimated, but the counterfactual outcomes can be predicted for each individ-

ual. Within the ATE methods homogeneous treatment effects are assumed, but the CATE

methods allow for heterogeneity, conditional on some x̃, aiming to get one step closer to

estimating the individual level causal effects and predicting counterfactual outcomes.

2.2 Regression Discontinuity

In order to estimate the causal effect of the smoking ban on our outcomes of interest we

use the Regression Discontinuity Design (RDD) originally proposed by Thistlethwaite and

Campbell (1960). An RDD is appropriate when a single continuous forcing variable is used

to determine whether an individual is in the control or treatment group. Individuals above a

‘threshold’ are assigned to the treatment group, while those below are assigned to the control.

Because of this ‘as if random’ assignment, the expected characteristics of individuals within
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each group should be equal. Therefore, regressions can be used in neighbourhoods close to

the threshold to identify the causal effect of the treatment on outcomes on interest.

Within our analysis the forcing variable used is time (i.e. the interview date) while the

threshold is determined by the time of the ban (1st July 2007). If the interview date of the

survey is after the date of the ban individuals are classed as treated, while those interviewed

before are in the control group.6 We utilise a sharp RDD as the ban was introduced nationally

on the 1st July 2007.7 Our general econometric model is as follows:

y = β0 + Dβ1 + Zβ2 + (D′ × Z)β3 + u, for |Z| ≤ h (6)

Where, for N observations, y, the outcome of interest, D, treatment dummy, Z, forcing

variable (days from the ban), and u, error term, are [N × 1] vectors. Z is centred so that

Z = 0 at the point of the intervention; ensuring ease of interpretation of the coefficients.

The bandwidth, h, is used to define the size of the neighbourhood surrounding the threshold.

Coefficient β0 denotes the expected level of y for the control group when Z→ 0. The main

coefficient of interest is β1 which estimates the Average Treatment Effect, τ̂A, by identifying

the size of the discontinuity at the threshold. Coefficients β2 and β3 denote the trend of y

over time and the change in that trend due to the treatment, respectively.

2.3 Conditional Average Treatment Effects

Average Treatment Effects, τA, are useful at summarising the typical effect on the whole pop-

ulation. However, they ignore how treatment effects can differ for individuals with different

characteristics (e.g. SES, age, gender). Conditional Average Treatment Effects, τC(x̃), can

be estimated to allow for such heterogeneity, conditional on observable characteristics x̃.

We propose a smooth and flexible non-parametric method for estimating treatment ef-

fects, conditional on x̃ the observable characteristic(s) of interest. The approach estimates a

6This means our design is somewhat similar to an Interrupted Time Series (ITS) design. However,
unlike ITS in general, our data are cross-sectional, we use a relatively small time period surrounding the
intervention and utilise alternative bandwidths to determine the size of the neighbourhood as sensitivity.
Using time is subject to two major criticisms: 1) other factors could also change at the same time as the
ban; 2) enforcement of the ban and/or behaviour change in response to it may be anticipatory or delayed.
Sensitivity analysis will strive to address this.

7RDDs are defined as either “sharp” or “fuzzy”. For the former, the probability of belonging to the
treatment group is deterministically determined by the forcing variable, while for the latter it is only an
increase in the probability of belonging to the either group when moving away from the threshold which is
required. Fuzzy RDD’s rely on using the assignment to treatment as an instrumental variable, to identify
the effect of the treatment on the ‘compliers’.
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set of locally-weighted regressions; where the ‘local’ weights are a function of the rank of x̃,

rather than the level of x̃. The approach allows for the estimation of Conditional Average

Treatment Effects, τ̂C(x̃) = β̂τ (x̃), and other conditional coefficients, β̂(x̃) (for additional

observable variables X), alongside the prediction of potential outcomes, Y (0) and Y (1). In

general, we model:

y = β0(x̃) + βτ (x̃)D + β(x̃)X + u (7)

Where y is the outcome variable, D the treatment dummy, X the additional explanatory

variables and u the error term. The coefficients are functions of the observable characteris-

tic(s) of interest x̃: the constant, β0(x̃), CATE, βτ (x̃), and additional coefficients, β(x̃).

To obtain estimates of the above model our approach runs a set of M locally-weighted

regressions. Where in each j ∈M regression, weights, wij, are derived from a kernel function;

such that
∑N

i (wijri)/
∑N

i (wij) ≈ q∗j , the weighted average of the rank of the individual

equals the quantile of interest, ∀j ∈ M . Where for individuals i ∈ N , let ri = r(x̃i) be

the expected normalized rank of individual i with respect to x̃i, q
∗
j = q∗j (x̃) be the expected

quantile of interest for local-regression j and wij be the weight assigned to i in regression j.8

Once estimated, the set of M regressions provide separate coefficients β̂0(x̃i), β̂τ (x̃i) and

β̂(x̃i) for individuals, i, belonging to quantile j. These coefficients are estimated paramet-

rically, within each j regression, but non-parametrically, across the M quantiles of interest.

As an example, for an RDD, the model could be:

y = β0(x̃) + βτ (x̃)D + β2(x̃)Z + β3(x̃)(D′ × Z) + u, if |Z| < h (8)

The approach can be estimated as a kernel, local-linear or local-polynomial regression;

these alternatives are explicitly formulated within Appendix A.1. Appendix A.2 provides

extensive simulation tests of the proposed model; comparing the mean-squared error and

precision of estimated treatment effects.

8Note that here we use q∗j and ri to denote the middle value of the quantile and normalised rank of x̃,
i.e. if we have two quantiles/ranks we mean not that the first quantile/rank equals 0.5, but 0.25, and the
second 0.75, not 1.
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2.3.1 Weights

In order to estimate each locally-weighted regression, individual weights need to be derived.

Within the literature surrounding kernel and local-linear regressions these weights are typ-

ically derived from either the Uniform, Normal, Triangular or Epanechnikov distributions;

the choice of which tends not to be crucial (Pagan and Ullah, 1999). Here we propose and

formulate an alternative, the Beta distribution, which is particularly suited for the quantile

approach we use.

The Beta distribution is bounded between 0 and 1, using two flexible shape parameters,

a and b. We make two assumptions: (1) E(Q) = q∗: the expected value of Q is equal to our

quantile of interest, and (2) V ar(Q) = q∗(1−q∗)
s

: the variance of Q is dependent on a precision

parameter, s (where s ≥ 3), and decreases towards the bounds. From this, and according to

the characteristics of the Beta distribution, a and b are obtained as functions of q∗ and s.

E[Qj] =
aj

aj + bj
= q∗j (9)

V ar[Qj] =
ajbj

(aj + bj)2(aj + bj + 1)
=
q∗j (1− q∗j )

s
(10)

It follows that:

aj = q∗j (s− 1), bj = (1− q∗j )(s− 1) (11)

With these equations, for a given s, the probability density function (PDF), and therefore

the cumulative distribution function (CDF), can be derived for each level of q∗. Weights,

wij, for each regression j ∈ M can then be calculated for each individual, i ∈ N , by taking

the integral of the PDF for the interval within which the individual is situated.9 Formally:

wij =

∫ ri+
1

2N

ri− 1
2N

(
Γ(aj + bj)

Γ(aj)Γ(bj)

(
qaj−1(1− q)bj−1

))
dq (12)

To illustrate the above, let there be five quantiles at which we want to estimate local

regressions. In order to run five locally-weighted regressions, weights wij are needed, where

j ∈ 1, .., 5 and i ∈ 1, .., N . Figure 1 plots the PDFs for q∗ = [0.1, 0.3, 0.5, 0.7, 0.9], respectively

for each j, when s = 20. The weight given to each individual i for regression j is calculated

9For example, if N = 10, then for the first individual their expected normalised rank is 0.05. To
obtain their individual weight, wij , take the integral of the probability density function for the interval
[0.05− 1

2N , 0.05 + 1
2N ] or [0, 0.01]. This is equivalent to taking the CDF(0.01) - CDF(0).

10



from Equation 12. The weights for a given i are generally higher when ri → q∗j . In other

words, when we are interested in identifying the CATE, at q∗j , so generally, those who are

closer to q∗j are given a higher weight. The higher the number of quantiles (groups) we split

the observations into the more regressions will be run. The higher the level of precision, s,

the steeper the PDF and higher the variance in wij.

Figure 1: Beta Distribution: Probability Density Function

If the conditioning variable, X̃, is continuous then the individual ranks, ri are unique.

However, it is not necessary for X to be continuous in order to calculate weights. For κ

equal ranks, the individual weight is calculated as in Equation 12, but interval would be

between the lowest ‘potential’ rank rLi and the highest ‘potential’ rank rHi of that group of

individuals, where rHi = rLi + κ. That weight is then divided by κ to give wij.

Often, when conditioning on X̃ only one variable is used (e.g. SES). However, multiple

variables can be conditioned upon (e.g. both SES and age). Within our method this is

achieved simply by multiplying weights from marginal Beta distributions. However, an

alternative the Dirichlet (a multinomial Beta) distribution is formulated in Appendix A.3.

Alongside this, an alternative constant variance assumption for the Beta weights is derived.
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2.3.2 Locally-Weighted Regressions

Once weights, wij (here denoted as wj), have been calculated the set of M weighted least-

squares regressions can be run. Within each j weighted least squares regression we model:

√
wjyj =

√
wj

(
β0j + βτjDj + βjXj + uj

)
(13)

Where each j regression is multiplied by the square-root of the weights wj. The estimated

coefficients β̂0j, β̂τj and β̂j are assigned to each individual i, belonging to quantile j, providing

the coefficients β̂0(x̃i), β̂τ (x̃i) and β̂(x̃i) which are conditional on i’s x̃i. Within Stata this is

done by running the regression with aweights or pweights.10 Hence, it can flexibly be used

for many types of regression, for example, OLS, probit and tobit regressions.

2.4 Decomposition

While the above methodology allows for the estimation of treatment effects, it reveals little

of the reasons why such an effect exists. Through using decomposition analysis, popularised

by Blinder (1973) and Oaxaca (1973), we can estimate the component parts of the treatment

effect; which may shed light on such reasons. In order to do so, we estimate two separate

equations for the control and treatment group:

y0 = β00 + X0β0 + u0 (14)

y1 = β10 + X1β1 + u1 (15)

Where the subscript, g, denotes the control group (g = 0) and treatment group (g = 1).

The dependent variable y is an [N × 1] vector, for N observations. The p independent

variables are represented by the [N×p] matrix X, while u represents the normally distributed

[N × 1] error vector. The intercept is denoted by βg0 and the [p × 1] coefficient vector β

denotes the effects of the independent variables on the dependent variable. Given (14) and

(15), we are interested in the difference between the expectation of y0 and y1, which gives

the average treatment effect. Through rearranging the equations, we can decompose this

effect we can estimate the components of this effect:

10See Dupraz (2013) for a useful summary of weighted least squares in Stata.
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E[y1]− E[y0] = E[β10 + X1β1 + u1]− E[β00 + X0β0 + u0]

= β10 + E[X1]β1 − (β00 + E[X0]β0)

= E[X1](β1 − β0)︸ ︷︷ ︸
Coefficients

+ (E[X1]− E[X0])β0︸ ︷︷ ︸
Endowments

+ β10 − β00︸ ︷︷ ︸
Unexplained

(16)

The coefficients component denotes the proportion of the treatment effect which is at-

tributable to a change in coefficients. The endowments component identifies how much of

the difference is attributable to differing endowments of the two groups. The unexplained

component simply shows how much of this difference in unexplained by the previous two

terms. These components can be separated for each explanatory variable within the model.

Estimation is done using the oaxaca command in Stata (Jann, 2008).

2.4.1 Regression Discontinuity Particulars

While the above describes decomposition analysis in general, there are however some aspects

particular to the regression discontinuity design. Within a regression discontinuity design

we are interested in the estimating the discontinuity at the threshold (0), not the difference

in the expectation of the outcome before and after the threshold in general. The treatment

effect of interest is:

lim
z↓0

E[y1]− lim
z↑0

E[y0] (17)

As a result, when specifying Model (14) and (15) the J independent variables must be

interacted with a forcing variable, Z (which is centred on zero), in order to estimate the

treatment effect of interest. Our matrix of independent variables X should be:

X =


x11 . . . x1J z1 z1x11 . . . z1x1J

x21 . . . x2J z2 z2x21 . . . z2x2J

...
. . .

...
...

...
. . .

...

xN1 . . . xNJ zN zNxN1 . . . zNxNJ


With X so specified, we are interested in the components which correspond to βj,∀j ∈

[1...J ]. They provide the estimates when z = 0 and so relate to the discontinuity at the

point of the intervention. Of course, researchers interested in how trends shift due to the

treatment will find the j ∈ [J + 1...2J + 1] coefficients of interest.
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Combining decomposition analysis with the regression discontinuity design provides use-

ful additions and checks. Independent variables we expect to change, due to the treatment,

could provide insights into the reasons behind the treatment effect. If endowment com-

ponents change significantly, then (if the treatment caused those independent variables to

change) the component of the ‘total’ treatment effect attributed to that change in the in-

dependent variable can be estimated. Similarly, if the coefficient component attributable to

that independent variable changes the explanatory power that variable had, on explaining

the dependent variable, would also have changed.

Observable characteristics (controls) need to be balanced across control and treatment

group to adhere to the underlying assumptions of the RDD. Through checking the endow-

ments component of those controls we can check balance between groups; the coefficients

should all be insignificant. Furthermore, the coefficients component will identify any hetero-

geneity in treatment effects for the control variables (e.g. a larger effect for females).

The decomposition is explained in more detail in Appendix A.4, alongside an alternative

two-stage model which could allow for a causal interpretation of the endowment effects.

2.5 Decomposing Conditional Average Treatment Effects

The above methods can be combined to increase the explanatory power of the analysis.

By using the decomposition analysis in each of the M locally-weighted regressions we can

decompose conditional average treatment effects, conditional on the observable variable of

interest, x̃. This allows for a deeper understanding of the reasons underlying the relationship

between the CATEs and x̃.

3 Data

3.1 Health Survey for England

The Health Survey for England provides rich cross-sectional data on an extensive range

of variables relating to demographic and household variables. Particular interest is paid

to health-related variables, with a follow-up nurse’s visit conducted for most households.

Interviews are conducted, with all eligible members of each household, for a representative

sample across England. We focus on adults in the 2007 wave (n ≈ 6300).

14



The outcome measures of interest relate to both active and passive smoking. For active

smoking we focus on smoker (whether an individual currently smokes) and packs (the number

of cigarettes smoked in a day, averaged over the week, in packs of five). Additionally, we use

in-depth responses of where an individual smokes (at home, work, other’s home, pubs, cafes,

shops or car) and whom they smoke near (babies, children, youths, the elderly, those who are

pregnant or those with ashthma). Throughout, when analysing active smoking, we restrict

the sample to those individuals who are ever-smokers (i.e. those who have ever smoked in

their lives (N ≈ 3299)).

The outcome variables for passive smoking are exposed (whether an individual is exposed

to other people’s tobacco smoke) and hours exposed (the typical number of hours per week an

individual is exposed to other people’s tobacco smoke).11 More detailed information is also

available for where individuals are exposed to second-hand smoke (at home, work, other’s

home, public transport and pubs). For analysis of passive smoking the sample is restricted

to non-smokers (i.e. those who are currently not smoking (N ≈ 4693)).12

In addition to the outcome variables there are additional demographic and household

characteristics. We use age, sex, married, ethnicity (white = 1), urban/rural, pregnant and

ever-smoked. Detailed information on variables relevant to socioeconomic status (SES) is

available. These variables include: log equalised income13, Index of Multiple Deprivation

(IMD) deciles, savings and investments, benefit recipient, NS-SEC occupational classifi-

cations, labour market status, highest qualifications, housing tenure and overcrowing. A

multivariate index for SES is calculated using these variables in Section 3.2; it is this which

we use in our main analysis. The time of the interview is particularly important for our

analysis which is available as the month of interview. For conciseness, and relevance to the

regression discontinuity design used, descriptive statistics of the variables used are shown in

Section 3.3.

11The wording of the questionnaire for the main outcome variables is: smoker “Do you smoke cigarettes
at all nowadays?”; packs “how many cigarettes a day do you usually smoke on weekdays[/weekends]?”; hours
exposed “Now, in most weeks, how many hours are you exposed to other people’s tobacco smoke?”; exposed
is a dummy variable derived from hours exposed. For smokers the where and near whom variables relate to
the last seven days, while for non-smokers the where exposed variables ask if they are ”regularly exposed”.

12In addition to self-reported outcomes relating to smoking, cotinine levels are measured in a follow up
nurses visit. Cotinine, derived from saliva samples, is a metabolite of nicotine and is commonly used as
a biomarker of tobacco smoke exposure. While not used in the main analysis it is used in Appendix A.5,
giving confidence in the results which use self-reported measures of both active and passive smoking.

13See Appendix A.6 for issues relating to missing observations and details on imputation to address this.
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3.2 Socioeconomic Status

Socioeconomic status (SES) is a complex construct consisting of the accumulation and inter-

action of income, wealth, education, occupation, geographic region, housing, social networks

and culture, amongst other factors. Yet, researchers often focus on singular dimensions of

socioeconomic status. In doing so the socioeconomic status of individuals (or households)

may be misclassified and the impact that other dimensions have upon the question of interest

thereby missed.

Our approach aims to use a data driven approach to address the above concerns and the

multidimensional nature of SES. We use principal component analysis (PCA) to estimate

the latent construct of SES.14 By using the weights from the first component of the PCA

we estimate the relation between each individual factor and overall SES. The higher the

(positive) weight, the more that factor denotes an increase in SES. It is the combination and

interaction of an array of factors which will determine each individual’s SES. This method

derives a continuous numerical index, which determines the relative SES of an individual

within the sample. The index embodies both continuous variables (e.g income) and more

discrete class distinctions (e.g. NS-SEC). It incorporates the more fluid variables, such as

income and labour market status, alongside more crystallised variables, such as housing and

qualifications. Unfortunately, variables such as parental class or social and cultural capital

are not available in the survey. However, the methodology taken is pragmatic and flexible

and allows for important variables to be included if and when they are available from different

datasets.

We estimate SES conditional upon age and identify the relative socioeconomic status

of an individual within their age category. This separation allows factors to have different

weights throughout the lifecourse. This index, therefore, more closely resembles life-time

potential SES. The weights for each factor, conditional on the age of the individual, are

shown in Table 1.

Across age categories we observe consistent patterns. Having a higher income, living in

a less deprived area (IMD), possessing savings, having higher level occupational jobs, own-

ing your house, and having higher qualifications give a higher level of SES. While relying on

benefits, never having been employed, currently being unemployed, having low levels of qual-

14This method draws from the development literature, where asset-wealth indices are similarlty con-
structed (see Vyas and Kumaranayake (2006)).
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Table 1: Socioeconomic Status Index, Conditional on Age; PCA
18-24 25-34 35-44 45-54 55-64 65+

Weights Weights Weights Weights Weights Weights

Economic
Log Equivalised Income 0.362 0.385 0.399 0.375 0.377 0.339
IMD Quintile 0.213 0.202 0.250 0.273 0.281 0.299
Savings & Investments 0.157 0.142 0.157 0.176 0.235 0.256
No Benefits 0.298 0.287 0.237 0.248 0.302 0.288
NS-SEC
- Higher Manager/Profess. 0.076 0.180 0.196 0.163 0.158 0.172
- Lower Manager/Profess. 0.113 0.194 0.162 0.193 0.210 0.217
- Intermediate 0.148 -0.006 -0.003 0.028 0.018 0.066
- Small Employ./Own Acc. 0.005 -0.016 -0.024 0.020 0.032 0.031
- Lower Superv./Tech. 0.033 -0.015 -0.017 -0.022 -0.058 -0.056
- Semi-routine Occup. -0.028 -0.163 -0.120 -0.137 -0.136 -0.140
- Routine Occup. -0.017 -0.123 -0.167 -0.238 -0.214 -0.212
- Never Employed -0.274 -0.155 -0.189 -0.132 -0.059 -0.042
Labour Market Status
- Employed 0.306 0.321 0.316 0.319 0.267 0.071
- Unemployed -0.137 -0.086 -0.078 -0.068 -0.071
- Retired -0.010 0.007 -0.059 -0.046
- Full Time Student -0.021 -0.038 -0.030 -0.043 0.002
- Looking After Home -0.289 -0.242 -0.228 -0.154 -0.101 -0.008
- Other Inactive -0.114 -0.163 -0.186 -0.266 -0.228
Highest Qualification
- Degree 0.171 0.238 0.227 0.211 0.239 0.192
- Higher Education 0.055 0.053 0.047 0.077 0.107 0.142
- A Level 0.130 0.014 0.046 0.053 0.065 0.085
- GCSE A*-C -0.081 -0.087 -0.082 -0.011 0.065 0.145
- GCSE D-G -0.066 -0.114 -0.069 -0.048 -0.028 0.003
- Other -0.035 -0.014 -0.041 -0.033 -0.002 0.057
- None -0.254 -0.229 -0.242 -0.279 -0.327 -0.336
Housing Tenure
- Own Outright 0.082 0.020 -0.007 -0.009 0.174 0.347
- Own - Mortgage/Loan 0.297 0.295 0.300 0.271 0.055 -0.043
- Part Rent/Part Mort. -0.018 0.004 -0.023 -0.014 0.018 -0.040
- Rent -0.345 -0.313 -0.324 -0.322 -0.302 -0.350
- Live Rent Free 0.018 0.015 -0.014 -0.008 0.025 -0.021
Overcrowding -0.205 -0.239 -0.191 -0.139 -0.197 -0.199

Observations 452 886 1156 1039 995 1475

ifications, renting accommodation and living in overcrowded accommodation all correspond

to lower SES. These closely correspond to our prior intuition.

By estimating SES conditional on age, we also observe interesting differences between age

groups. Income becomes more important in mid-life, while living in a less deprived area and

having savings becomes increasingly important as individuals get older. Being employed in

higher-level occupations is important at older ages, whereas for those who are younger (and

perhaps more transient workers) this is less crucial. Currently being employed is crucial for

those of working age, but for those at retirement age it has little importance. Owning a

house is important throughout, but for those younger than 54 the majority own their house
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through a mortgage (85.2% of home owners), so this is the signal of higher SES; however

if individuals are approaching or have reached retirement age (55+) it is important that

they have paid off the mortgage (only 7.9% of homeowners older than 65 have still have a

mortgage/loan).

As with all measures of SES, our construct has limitations, but for our purposes it

represents a flexible data-driven attempt to move closer to the multidimensional construct

that socioeconomic status is.15

3.3 Descriptive Statistics

The descriptive statistics for variables relating to smoking outcomes and demographic char-

acteristics are shown in Table 2. The first four columns show the mean values and number of

observations for each variable before and after the ban, while the final column shows the dif-

ference in means and significance levels between these two groups from a two-sample t-test.

The data are cross-sectional, with a sample of approximately 6,300 adults from the 2007

wave. The differences in the smoking outcomes provide an overview and hint at the later

results, while the lack of difference in demographic characteristics highlights the balanced

nature of the survey before and after the ban.

Table 2: Descriptive Statistics
Before After Difference

Mean Obs Mean Obs

Smoking Outcomes
Smoker 0.21 3220 0.22 3080 0.01
Packs Smoked Per Day 0.54 3223 0.53 3079 -0.02
Exposed to Smoke 0.48 3205 0.26 3072 -0.22***
Hours Exposed to Smoke 5.28 3205 3.15 3072 -2.26***
Ever Smoked 0.60 3221 0.61 3081 0.00
Cotinine Levels 68.92 2104 59.69 1777 -9.38**
Smoke in Pubs 0.07 3204 0.01 3065 -0.07***
Exposed in Pubs 0.26 2926 0.02 2889 -0.24***
Demographics
Age 49.73 3237 50.45 3094 0.43
Sex (1 = female) 0.56 3237 0.55 3094 -0.00
SES 0.59 3048 0.60 2955 0.01
Married Couple 0.57 3237 0.56 3094 -0.01
Ethnicity (1 = white) 0.89 3222 0.91 3086 0.02**
Urban 0.78 3237 0.77 3094 -0.01
Pregnant 0.01 3237 0.01 3094 0.00

15For further detail, Appendix A.7 cross-tabulates smoking outcomes, demographic characteristics and
individual SES variables against the quantiles of the derived SES variable.
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We observe that before the ban 21% of the population smoked, with an average of 0.54

packs (or 2.93 individual cigarettes) smoked. These levels of active smoking did not fall

immediately after the ban. For passive smoking, however, we do observe a drop, from a 0.48

probability of being exposed down to 0.26, with the number of hours exposed dropping by

2.26 from 5.28. The average level of cotinine (a biomarker of nicotine levels) also significantly

drops. For smoking specifically in pubs, we observe a fall from 7% (34% for smokers) to under

1% (under 3% for smokers). A similar significant change emerges for passive smoke exposure

in pubs, from 26% of the population to 2%.

In terms of demographic characteristics we observe little difference on average between

the samples before and after the ban, with the exception of a small difference for ethnicity.

Indeed, by testing if all of these characteristics combined have any explanatory power at

explaining if observations are before or after the ban we obtain the F-statistic p-value of

0.211, meaning that one cannot reject the null hypothesis that all β coefficients are equal

to zero. Our sample, therefore appears balanced before and after the ban. We nonetheless

observe significant differences in the smoking variables.

3.4 Smoking Outcomes Over Time

To illustrate the effect of the ban Figure 2 plots important smoking outcomes across time.

The top panel presents active smoking variables where the sample is restricted to ever-

smokers. The bottom panel shows passive smoking outcomes for non-smokers. The scat-

terplot shows mean outcomes over time, while the white lines and blue areas show the

predicted averages and corresponding 95% confidence intervals as estimated by RDD regres-

sions in Tables 3, 4 and 6. To illustrate the long term trend of these smoking outcomes, data

from additional waves of the Health Survey for England (waves 2004 until 2010) are used.16

Within each graph the RDD neighbourhoods (data from the 2007 wave) are shown, enabling

16All seven waves are not used in our main analysis for two reasons. First, the regression discontinuity
design requires that only observations close to the ban are used. Second, for most waves of the survey it is
not possible to identify the year of the interview for all months. The interview period is 15 months (for the
main interview) and while the month of interview is available the year of interview is not. This, for example,
means that for observations in January, February or March in the 2006 wave the interview could have been
held in either 2006 or 2007. Fortunately, in the 2007 wave one variable identifies of the interview date is
after the smoking ban, enabling the identification of the correct year. This reveals that there are 37.3% of
January interviews in 2008, with 14.8% and 7.4% for February and March respectively. Without this variable
a significant amount of observations would have been misclassified. We therefore, conservatively, drop those
months in waves other than 2007 in Figure 2.

19



a visual comparison of the average treatment effects, estimated later, and the longer term

trends.

Figure 2: Smoking Outcomes Over Time: 2004-2010

Visually, these plots show that the level of active smoking is not reduced by the ban,

however there are large, sharp and persistent drops in outcomes relating to passive smoking.

Focusing specifically in smoking in pubs, we observe even more stark discontinuities in both

active and passive smoking. The exact timing of the ban therefore appears to correspond

to large falls in specific smoking outcomes. The following sections focus on the regression

discontinuity design, using data within the neighbourhoods shown to estimate the casual

treatment effects of the ban.
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4 Results

4.1 Average Treatment Effects

Table 3 shows the estimated coefficients from the regression discontinuity design on both

active (smoker and packs) and passive (exposed and hours exposed) smoking. Results show

that the smoking ban had no significant short-run effect on the level of active smoking, but

caused a large and significant reduction in passive smoking. The average treatment effect for

both smoker and packs is not significantly different from zero. However, for non-smokers, the

probability of being exposed to second-hand smoke is reduced by 0.228, a 53.4% reduction

from 0.427, and the number of hours exposed per week drops from 2.87 to 1.486.

Table 3: Regression Discontinuity Design: Average Treatment Effects
(1) (2) (3) (4)

Smoker Packs Exposed Hours Exposed
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Treatment 0.0449 0.1076 -0.2281∗∗∗ -1.3846∗∗∗

(0.0351) (0.1220) (0.0266) (0.4729)
Time -0.0003 -0.0008 0.0002 -0.0020

(0.0002) (0.0009) (0.0002) (0.0040)
Treatment X Time 0.0001 -0.0001 -0.0004 0.0021

(0.0004) (0.0012) (0.0003) (0.0050)
Constant 0.3622∗∗∗ 0.9214∗∗∗ 0.4272∗∗∗ 2.8711∗∗∗

(0.0242) (0.0830) (0.0203) (0.3608)

N 3299 3297 4693 4693
R-squared 0.0006 0.0008 0.0660 0.0097
Sample Ever-Smokers Ever-Smokers Non-Smokers Non-Smokers
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The results in Table 3 are robust to a range of sensitivity analyses, which are shown in

Appendix A.8. Specific details relating to the bandwidth, functional form and parametric

model, alongside placebo timing tests are shown in A.8.1, with three alternative models which

include controls in A.8.2. Appendix A.5 additionally analyses cotinine levels, a biomarker of

tobacco smoke exposure, and finds results which parallel those above.

4.2 Conditional Average Treatment Effects

While the above shows how the ban affected smoking outcomes on average, it reveals little

of the component parts of those average effects. By using our proposed method treatment

effects can be estimated conditional on the level of socioeconomic status. Figure 3 plots these
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Conditional Average Treatment Effects (CATEs), with corresponding confidence intervals,

at each percentile of socioeconomic status for: smoker, packs, exposed and hours exposed.

Figure 3: Conditional Average Treatment Effects

For both smoker and number of packs, results show that there are no significant effects

(p < 0.1) of the ban at any level of socioeconomic status.17 For both exposed and hours

exposed, however, we observe heterogeneity in the effect size and degree of significance at

across the levels of SES. For very low levels of SES there are no significant effects of the

ban on either variable. But, above that, we observe opposite trends for exposed and hours

exposed. For exposed, the treatment effect increases with SES, while for hours exposed the

treatment effect decreases.

Sensitivity analysis relating to the estimated CATEs is provided in Appendix A.9. Alter-

natives to our socioeconomic status variable are used as the conditional variables (alternative

SES, income, IMD, NS-SEC and highest qualification) and different methods (dummy in-

17The only exception is that the effect on smoker is negative and significant for those at the extremes.
This effect is, however, not robust to alternative RDD specifications (see Appendix A.9.3).
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teraction and interaction), weighting functions and precision parameters are explored. The

results generally appear to be robust to these alternative specifications.

4.3 Active Smoking

By using more detailed survey data we can identify the location that smokers smoke and

whom they smoke near. Using this information we can delve into active smoking, to identify

if the ban had an effect on the behaviour of smokers, even if it did not reduce the number

of smokers or the amount that they smoke.18

Table 4 shows RDD results which reveal the ATEs of the ban on the location where

smokers smoke. Results show that the ban did significantly reduce smoking in pubs, with

36.8% of smokers smoking in pubs before the ban reducing to 4.14% immediately after the

ban. Reductions were also seen in cafes/shops and in the car. There are no significant

reductions at work, but relatively few individuals smoke at work to begin with and the effect

size more than halves this. Importantly there is not an increase in smoking in the home,

or in other’s homes. The ban significantly reduced the propensity to smoke in the intended

location, the pub, and did not increase the probability that smokers smoked at home.

Table 4: RDD Smoking Location: Smokers
(1) (2) (3) (4) (5) (6)

Home Work Other’s Home Pubs Cafes/Shops Car
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Treatment -0.0142 -0.0347 -0.0580 -0.3263∗∗∗ -0.0509∗∗ -0.1005∗

(0.0352) (0.0302) (0.0418) (0.0425) (0.0238) (0.0517)
Time -0.0002 -0.0006∗∗ 0.0001 0.0004 -0.0002 0.0001

(0.0002) (0.0003) (0.0003) (0.0004) (0.0002) (0.0004)
Treatment X Time 0.0006∗ 0.0004 0.0001 -0.0006 0.0001 0.0002

(0.0003) (0.0003) (0.0004) (0.0004) (0.0002) (0.0005)
Constant 0.8854∗∗∗ 0.0724∗∗∗ 0.1717∗∗∗ 0.3677∗∗∗ 0.0652∗∗∗ 0.3286∗∗∗

(0.0232) (0.0269) (0.0316) (0.0393) (0.0219) (0.0381)

N 1259 1259 1259 1259 1259 1259
R-squared 0.0029 0.0506 0.0028 0.1618 0.0315 0.0059
Sample Smokers Smokers Smokers Smokers Smokers Smokers
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

18These outcomes are self-reported, hence, what we observe as a reduction in active smoking could in
fact be an increase in the propensity to misreport the amount of smoking after the ban. The ban could be
interpreted as a strong signal that smoking is considered antisocial by the public. This could lead smokers to
report lower smoking after the ban. While we cannot address this issue directly, we can use the self-reported
outcomes relating to passive smoking, as such social stigma should not make non-smokers under-report how
much they are exposed after the ban. Section 4.4 shows these results and shows that the ATEs for the
location of exposure are generally consistent with the responses from the smokers.
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Table 5 reveals the effect of the ban on the propensity of smokers to smoke near ‘vulner-

able’ people. The survey asks if smokers smoke near babies, children, youths, the elderly,

pregnant women or those with asthma. Results show that there are significant reductions in

the propensity to smoke near all of these groups (bar children). These results imply that the

ban had indirect externalities, possibly an educational impact on the harms of second-hand

smoke, particularly as some of these groups (babies and youths) are unlikely to be in the

pub, the location where smokers have reduced their smoking the most.

Table 5: RDD Smoking Near Whom: Smokers
(1) (2) (3) (4) (5) (6)

Babies Children Youths Elderly Pregnant Asthma
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Treatment -0.0434∗∗ -0.0428 -0.0877∗∗ -0.0812∗∗ -0.0461∗∗ -0.0808∗∗∗

(0.0183) (0.0409) (0.0378) (0.0405) (0.0187) (0.0298)
Time 0.0002 0.0003 0.0004∗ 0.0000 0.0004∗∗∗ 0.0002

(0.0001) (0.0003) (0.0003) (0.0003) (0.0001) (0.0002)
Treatment X Time -0.0002 -0.0006 -0.0002 0.0002 -0.0003∗∗ -0.0001

(0.0002) (0.0004) (0.0004) (0.0004) (0.0002) (0.0003)
Constant 0.0541∗∗∗ 0.1845∗∗∗ 0.1686∗∗∗ 0.1753∗∗∗ 0.0539∗∗∗ 0.1161∗∗∗

(0.0165) (0.0303) (0.0284) (0.0310) (0.0161) (0.0253)

N 1260 1260 1260 1260 1260 1260
R-squared 0.0070 0.0057 0.0050 0.0082 0.0115 0.0116
Sample Smokers Smokers Smokers Smokers Smokers Smokers
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As shown in Section 4.2 there may be heterogeneity in treatment effects, if estimated

conditional on the level of socioeconomic status. This may partially be due to different levels

of the outcome, conditional on SES, as well as a difference in how effective the treatment has

been for individuals with certain levels of SES. One useful output of our proposed analysis

is the ability to predict the expected levels of the outcomes, assuming individuals do or do

not receive the treatment. This counterfactual analysis is particularly useful as it predicts

the potential outcomes for the same sample. Within the regression discontinuity design

framework this amounts to estimating the full model and predicting outcomes assuming

individuals are at the time of the ban (Z = 0).

Figure 4 plots these counterfactual predictions, conditional on SES. The outcome of

interest is smoke near vulnerable, a dummy variable denoting if an individual smokes near

any of the six vulnerable groups; with the probability of smoking near vulnerable people

being predicted. The model is a standard RDD with control variables. The scatter show

the predicted counterfactual outcomes, given the characteristics of that individual belonging

to that SES quantile of interest. The line, and 95% confidence intervals, show the expected
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counterfactual outcomes for the ‘average’ individual within the sample.19 These are further

split into subsample of smokers and ever-smokers, for the left and right panel respectively.

Figure 4: Conditional Counterfactual Predictions: Smoke Near Any Vulnerable Group

Results show, in both samples, that the predicted probability of smoking near vulnerable

groups is higher for those of a low socioeconomic status. The ban was effective in signifi-

cantly reducing the probability of smoking near vulnerable people for smokers from the 22nd

percentile up to the 73rd percentile. However, at the extremes the ban had no significant

effect. For those of highest SES the level was already low and there was therefore little po-

tential for reduction. However, for the lowest levels of SES there appears to be no significant

reduction, hence the level remains high.

19The reasons to show both are: 1) to illustrate the significant differences between control and treatment
group, at particular levels of SES; 2) to show how, by including control variables, better predictions about the
levels for individuals can be made. While standard RDD models may be suitable for estimating treatment
effects, they provide little predictive accuracy. The R2 for the RDD with controls (for the smokers population)
is 0.099 compared to 0.053 of the standard RDD model.
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4.4 Passive Smoking

Responses relating to the location of exposure to second-hand tobacco smoke are also avail-

able within the survey. Using these responses allows for a more in-depth analysis of the

reasons behind the large and significant reductions in passive smoke exposure. Regression

discontinuities are run first, to identify ATEs of the ban on the location of exposure, then

more sophisticated decomposition analyses are run to identify the contributions of these

reductions in reducing the total number of hours exposed.

Table 6 estimates the ATEs of the ban on the location where individuals are exposed to

second-hand smoke. We observe large and significant reductions at the pub and no significant

change at home. We also observe significant reductions at work, in other’s homes, on public

transport and in other locations. These results show that the ban significantly reduced

exposure to tobacco smoke for non-smokers, particularly in the locations the ban focused

upon, and did not have the unintended consequence of increasing exposure at home.

Table 6: RDD Passive Smoke Location: Non-Smokers
(1) (2) (3) (4) (5) (6)

Home Work Other’s Home P. Transport Pubs Other
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Treatment -0.0137 -0.0313∗∗ -0.0526∗∗∗ -0.0153∗∗∗ -0.1892∗∗∗ -0.0605∗∗∗

(0.0134) (0.0126) (0.0161) (0.0057) (0.0195) (0.0148)
Time -0.0001 -0.0000 0.0003∗∗ 0.0000 -0.0000 0.0000

(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001)
Treatment X Time 0.0002 -0.0001 -0.0003∗ -0.0000 -0.0001 -0.0001

(0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0002)
Constant 0.0483∗∗∗ 0.0612∗∗∗ 0.0984∗∗∗ 0.0169∗∗∗ 0.2179∗∗∗ 0.0892∗∗∗

(0.0099) (0.0104) (0.0124) (0.0053) (0.0181) (0.0130)

N 4323 4323 4323 4323 4323 4323
R-squared 0.0009 0.0098 0.0049 0.0059 0.1012 0.0224
Sample Non-Smokers Non-Smokers Non-Smokers Non-Smokers Non-Smokers Non-Smokers
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

When comparing the results relating to passive locations to the active smoking locations

of Table 4 we observe parallel patterns. Both active and passive variables show a large and

significant reduction in pubs and no significant change at home. Responses relating to work

and other’s home are in the same direction and are of a similar relative magnitude;20 they

are, however, only significant for passive smoke.21

20A 47.9% reduction in active smoking at work, compared to a 51.1% reduction in passive smoking at
work. With a 33.8% reduction at other’s homes for active smoking and a 53.5% reduction for passive smoking
at other’s homes.

21This is potentially due to the smaller sample size within the active smokers regressions.
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4.4.1 Decomposing Average Treatment Effects

The above separately estimates the effect of the ban on reducing exposure in specific lo-

cations. However, as individuals can be exposed in multiple locations, a reduction in one

location does not necessarily entail a reduction in general. To assess this, decomposition

analysis can be used where the dependant variable is hours exposed and location-specific

exposure dummies are used as independent variables. Using this the contribution that a

reduction in exposure at a particular location has on a reduction in the total number of

hours exposed can be estimated.

Table 7 shows the decomposed ATEs of the ban on the number of hours exposed. The total

effect is split into the three component effects: the endowment, coefficient and unexplained

effects. The independent variables are split into the location exposed and control variables.

The interpretation and relevance of the endowment and coefficient components depends

on which type of variables is being considered. Coefficients relating to the interaction of

the current variables and time (our forcing variable) are not shown, the coefficients shown

can be interpreted as the effects at the time of the ban for the average individual. The

total effect, which is equivalent to the ATE, is -1.627 and significant at the 1% level. This

effect is almost entirely explained by the endowment component, as both the coefficient and

unexplained components are not significant.

The endowment effects of the location exposed variables are the most important here.

These results show that, of the total effect of -1.746, the most significant individual compo-

nents were from a reduction in exposure in pubs (-0.897), at work (-0.491) and at other’s

homes (-0.137). It is the reduction in individuals being exposed in pubs, at work and at

other’s homes which explains the majority of the reduction in the total hours exposed. The

endowment effects of the control variables are all insignificant and close to zero. In the

context of our regression discontinuity design this gives further reassurance that the design

is valid. It shows that there is no significant contribution to the total effect, at the time of

the ban, from differences in characteristics between control and treatment group.

The coefficient contributions are not significant for any of the location exposed with the

exception of being exposed in an other location. The interpretation for this is that the

relation that being exposed in an other location has with the number of hours exposed has

increased after the ban. No control variables coefficients are significant, meaning that any

heterogeneous treatment effects observed explain little of the total (average) effect.
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Table 7: Decomposed Average Treatment Effects: Hours Exposed
(1)

Hours Exposed
Endowment Coefficient

Coef. S.E. Coef. S.E.

Location Exposed
- Home -0.121 (0.108) -0.095 (0.287)
- Work -0.491∗∗∗ (0.145) -0.184 (0.125)
- Other’s Home -0.137∗ (0.071) 0.007 (0.163)
- Public Transport 0.022 (0.060) 0.012 (0.011)
- Pubs -0.897∗∗∗ (0.216) -0.021 (0.057)
- Other -0.122 (0.089) 0.177∗ (0.105)
Controls
Age 0.010 (0.033) -3.346 (7.728)
Age Squared 0.000 (0.015) 0.958 (3.902)
Sex (1 = female) 0.000 (0.003) -0.092 (0.465)
Married Couple 0.000 (0.002) 0.135 (0.465)
Ethnicity (1 = white) -0.001 (0.027) 0.620 (1.146)
Urban -0.001 (0.003) 1.012 (0.735)
Pregnant -0.009 (0.017) 0.026 (0.049)
Ever Smoked 0.001 (0.008) -0.250 (0.382)

Unexplained 1.161 (4.044)

Component Effects -1.746*** (0.307) -1.041 (4.023)
Total Effect -1.627*** (0.440)
Time Controls YES
N 4316
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.4.2 Decomposing Conditional Average Treatment Effects

The above analysis allows for the decomposition of ATEs into component parts. However,

as shown in Section 4.2 treatment effects can vary, conditional on the level of socioeconomic

status. By combining these approaches the CATEs can be decomposed into component

parts. This allows insights into the potential reasons behind any heterogeneity in CATEs.

Figure 5 shows the decomposed CATEs of the number of hours exposed. The ‘total’

effect is shown alongside the two components which contribute the most to the total effect.

Both are endowment effects, showing if individuals are exposed in the pub or at work. From

these two components we observe opposite slopes. The exposed in pubs endowment effect,

as observed in Table 7, has the largest contribution in reducing the total effect, overall. But

we observe an upward slope, in line with the total effect, showing a reduction in the size of

effect as SES increases. For exposure at work we observe the opposite trend, its contribution

to the total effect is smaller (and indeed insignificant) for the lower levels of SES.
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Figure 5: Decomposed CATEs: Hours Exposed (95% CIs)

5 Discussion

5.1 Smoking Ban

The smoking ban in England neither reduced smoking prevalence nor intensity of smoking in

the short term. The primary aim of the ban, however, was to reduce second-hand exposure

to tobacco smoke. In this respect, the smoking ban appears to have been successful: there

was a 22.8pp reduction in the prevalence of reported exposure to tobacco smoke for non-

smokers following the ban and an average reduction in exposure intensity of 1.38 hours per

week. As intended, the ban had its greatest impact in pubs and importantly this was not

achieved at the cost of increased exposure in homes.

These results corroborate findings of previous studies, which also reported limited im-

pact of the ban on total tobacco consumption (Fowkes et al., 2008; J. Lee, Glantz, and

Millett, 2011; Jones et al., 2015) and substantial reductions in second-hand exposure (Sims

et al., 2011). The main additional contribution of our study was to disaggregate the average

treatment effects of the smoking ban by socioeconomic status and location, without assum-

ing a particular functional form. For tobacco consumption, we found that the overall lack
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of impact of the ban applied across the socioeconomic spectrum. In contrast, the impact

of the ban on second-hand exposure varied by both socioeconomic status and location; the

greatest effect was in those with the highest baseline exposures towards the more deprived

end of the socioeconomic spectrum. For this reason, the legislation appears to have been

equity increasing overall, but those with the very lowest socioeconomic status – who also

had relatively low baseline exposure – benefited less. In terms of location, there was less of

an impact in the workplace for people at the lower end of the socioeconomic spectrum, but

a greater impact in pubs.

Our study is subject to several limitations. The Health Survey for England is a large

national survey using robust methodology to ensure representativeness, but problems of low

numbers emerge once the sample is divided into intersecting groups of interest. This is

reflected in the imprecision of estimates for some of our outcomes. We are also reliant on

accurate reporting of smoking behaviour and second-hand exposure, which is subject to re-

call and social desirability bias. Responses may have changed in the periods immediately

preceding and following the introduction of the ban, as respondents will have been sensitised

by publicity surrounding the legislation, changes to the smoking environment and challenges

to their and others’ smoking behaviour. These biases could conceivably vary by socioeco-

nomic status, affecting our results. Analysis of cotinine samples, however, corroborates the

main results and, although it is possible that respondents to the survey, anticipating cotinine

sampling, took additional steps to avoid exposure following the legislation, we think this is

unlikely to explain our findings or to limit their generalisability to the general population.

5.2 Methods

The method we develop uses locally-weighted regressions to estimate Conditional Aver-

age Treatment Effects (CATEs), when the conditioning variable(s) x̃ are continuous. Our

method has advantages over the standard methods of dummy interaction (or stratification)

and (parametric) interactions, particularly when the relation between CATEs and x̃ is com-

plex. As Appendix A.2 shows, when compared to the dummy interaction model our method

more accurately estimates CATEs when the number of interactions is small and is more

precise when that number is high. When compared to an interaction model, if the degree of

parametric interaction assumed is too low our method is much more accurate. The advan-

tage of our method is in its flexibility to allow for any underlying relation between CATEs
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and x̃; if, however, that relation is shown to be simple then the standard methods may be

preferable.

Although the weights used within each local regression can be drawn from the typical

kernel functions (Uniform, Normal, Triangular and Epanechnikov) we specifically derive,

and use, weights from the Beta distribution. One issue in kernel estimation, with the typical

kernel functions, is that coefficient estimates are biased at the bounds. The reason for this is

that as the bounds of x̃ (or q(x̃)) are approached, the weighted average of x̃ (or q(x̃)) moves

away from x̃ (or q(x̃)) in the opposite direction to that bound. The advantage of using the

Beta distribution is that this bias does not occur. Precision is still lost at the bounds, but

the lack of bias is perhaps advantageous; particularly when the group of interest is at the

bounds (i.e. the extreme poor).

One limitation of this paper is the focus on average effects. Although conditional average

treatment effects reveal more than average treatment effect alone, they still seek to estimate

the changes in the average of the outcome variable, y, conditional on x̃. Quantile (Koenker

and Bassett Jr, 1978) and distributional regressions (Chernozhukov, Fernández-Val, and

Melly, 2013), seek to estimate distributional effects, conditional on the quantile (or level)

of y, rather than x̃. Distributional treatment effects show how much y changes at different

quantiles of y, providing an analysis which goes ‘beyond the mean’ (see Fortin, Lemieux,

and Firpo (2011) for a review). A further extension to our paper could be to combine these

approaches allowing for the estimation of conditional distributional treatment effects.

6 Conclusion

Results show that the ban had no immediate impact on the prevalence or intensity of active

smoking. However, the ban did reduce passive smoking, through reducing the probability of

being exposed and the number of hours of exposure to smoke. Smoking behaviour therefore

changed, not in terms of level but in terms of location, with smokers avoiding smoking in

particular locations, particularly pubs, and smoking less near vulnerable groups. There was

therefore a large reduction in exposure to smoke in pubs, alongside reductions at work, in

other’s houses and on public transport, with no significant increase in the home.

While these Average Treatment Effects (ATEs) reveal the ‘typical’ effect of the ban they

neglect any heterogeneity in treatment effects and hence ignore any impact the ban has on

inequalities in health. To address this we proposed a method for estimating Conditional Av-
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erage Treatment Effects (CATEs). Our approach estimates a set of locally-weighted regres-

sions, each centred on quantile(s) of x̃, the conditional variable(s) of interest. This approach

allows for the estimation of complex relationships between CATEs and x̃, decomposition of

these CATEs and prediction of counterfactual outcomes. We provide a flexible and easy-to-

use Stata program (lwcate) to enable others to use our methods for experimental, natural

experimental and quasi-experimental designs.

We applied our method to estimate causal effects of the ban, conditional on the level of

socioeconomic status (SES). Heterogeneity in CATEs was found for both exposed and hours

exposed variables, with greater reductions in hours exposed for those with lower SES. To

provide insights into the reasons behind this heterogeneity in CATEs we conducted decom-

position analysis. We found that reductions in exposure in the pub and at work contributed

most to the overall reduction in the number of hours exposed. But observed that the reduc-

tion in hours exposed for the poor was mainly due to a reduction of exposure in the pub,

while reductions at both work and the pub contributed to the overall reduction in exposure

at higher levels of SES.

These methods to both estimate and decompose Conditional Average Treatment Effects

allow for an analysis that goes beyond the mean. The impacts that policies have on inequal-

ities in society can therefore be estimated and better understood, providing more useful and

nuanced information for future policy decisions.
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A Appendix

A.1 Kernel, Local-Linear and Local-Polynomial Estimation

While the main method sets out the estimation procedure for a non-parametric estimation

which closely resembles a kernel regression approach, it is straight forward to extend this

model to a local-linear or local-polynomial estimation. The main model estimates M locally-

weighted regressions at j quantiles of X̃, q∗j (X̃):

√
wj y =

√
wj

(
β0j + Xβj + u

)
(18)

This method non-parametrically estimates coefficients β̂j, for all individuals i who be-

long to quantile q∗j (X̃). Meaning that all individuals within that quantile have the same

“constant” coefficient estimates, as in a kernel regression. This restriction can be lifted by

estimating the set of M local-linear regressions:

√
wj y =

√
wj

(
β0j + Xβj + (X̃j − X̃j)βLj + u

)
(19)

The difference between the kernel and local-linear estimation is that, for the kernel esti-

mation X̃ is not explicitly included within the model while in the local-linear estimation the

difference between X̃j and the mean of X̃j within a particular quantile j, X̃j, is included.

This allows not only for “constant” coefficients to be estimated, for all individuals within

quantile j, but a linear relation for individual i from their distance to the mean X̃j of their

quantile, X̃j. This can be further extended to a local-polynomial regression, where the para-

metric form of this line is not assumed to be linear, where D is the degree of the polynomial

chosen:

√
wj y =

√
wj

(
β0j + Xβj +

D∑
d

(X̃j − X̃j)
dβLdj + u

)
(20)

These methods are particularly useful for the typical weighting functions within the non-

parametric literature. As at bounds the weighted average rank (or X) generated using each

of the Uniform, Triangular, Normal and Epanechnikov distributions is biased away from that

bound. This, however, is less of an issue for the weights derived from the Beta distribution.
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A.2 Simulation Testing

In order to test the proposed method we simulate data for 200,000 individuals. We model

health as being related to socioeconomic status (SES), time and treatment status. We

model five alternative functional forms, where we vary the relationship between the treatment

effects and SES. The underlying parameters are known, enabling the calculation of analytical

conditional average treatment effects (CATEs), for each individual i within the sample.

We test how well our model performs by calculating error, the mean squared-error be-

tween the individual-level estimated and analytical CATEs, and precision, the standard

errors of the estimates. Our method will be compared to alternative methods: dummy in-

teraction models and (parametric) interaction models. Then the model choices within our

method will be tested: the precision parameter, number of quantiles, kernel weighting func-

tion and type of local estimator. Finally, Monte-Carlo simulations will be run to establish

how well the model performs with finite samples. The structure of the simulated data is:

yi = β0 + x̃iβ1 + fτ (x̃i, βτ )di + ziβ2 + (zi ∗ di)β3 + ui (21)

Where, for individual i, yi denotes health, x̃i socioeconomic status (SES), the treatment

dummy is di, time is denoted by zi and the error is ui. SES is randomly drawn from the Beta

distribution, x̃i ∼ Beta(3, 2.5), while the error term is normally distributed, u ∼ N(0, 1) ∗ 2.

Time zi is uniformly drawn, between -100 and 0, for those in the control and between 0 and

100 for the treated. The constant β0 = 50, while β1 = 10, meaning that health is positively

associated with SES. For simplicity β2 = β3 = 0, to ensure constant time trends.

Our main interest is in the function fτ (x̃i, βτ ), which denotes the conditional average

treatment effect. This function is different for each of the five alternative simulations we run

and it is this we aim to estimate and compare. The five functional forms are as follows:

A NoRelation : fT (.) = 5

B Linear : fT (.) = 10.x̃i

C Quadratic : fT (.) = 25.x̃i − 25.x̃2
i

D Cubic : fT (.) = −15.x̃i + 95.x̃2
i − 85.x̃3

i

E Discontinuous : fT (.) = 2.x̃i + 5.I[x̃i > 0.5] + 5.I[x̃i > 0.75]
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The resulting simulations for 200,000 people are shown in Figure 6.

Figure 6: Simulated Data: Alternative Functional Forms

Table 8 shows the error (Mean Squared Error) and precision (Standard Error) of the

Beta method, in comparison to dummy interaction models, where the number of interacted

dummies of x̃i is varied. Error in estimation generally increases as the complexity of the

‘true’ model increases. For the dummy interaction models with low numbers of interactions

this increase is rapid, while the increase for the 100 interactions model is kept low. The

error for the Beta model is comparable to the 100 interactions model, with the exception of

‘true’ Model E. Precision is constant across the ‘true’ models, but decreases as the number

of interactions increase. The Beta method consistently lies between the 5 and 10 dummy

interaction models. This simulation shows that the error of the Beta model is comparable

to a dummy interaction with 100 interactions (with the exception of Model E), but it has

precision similar to models with far fewer interactions.

Table 9 compares the Beta method to (parametric) interaction models, where the degree

of the interaction with x̃i changes. The degree of interaction (Constant, Linear, Quadratic

and Cubic) correspond directly to the ‘true’ models (A. B, C and D). This is apparent when

observing the low error on the upper diagonal. If the degree of the interaction is general

enough, then the interaction models do well and outperform the Beta method. However,

when the degree of interaction is not general or the ‘true’ model is not parametric (Model
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E) enough then interaction models have much higher levels of error than the Beta method

does. Precision decreases as the degree of interaction increases, but is consistently lower

than the Beta method. Table 9 shows that if the relation between CATEs and x̃i is simple

the interaction models are preferable, but if they are too complicated the Beta method is

preferred. As this relation will always be unknown a priori, the Beta method may be useful

to test the complexity of the relation.

Table 8: Dummy Interaction Comparison
Mean Squared Error

2 5 10 20 100 Beta

A 0.001 0.003 0.005 0.009 0.033 0.011
B 1.196 0.259 0.083 0.033 0.035 0.023
C 1.175 0.425 0.170 0.068 0.035 0.032
D 3.684 1.282 0.503 0.191 0.054 0.058
E 5.330 1.011 0.810 0.486 0.101 0.727

Standard Error
2 5 10 20 100 Beta

A 0.030 0.044 0.061 0.085 0.190 0.055
B 0.035 0.045 0.061 0.085 0.190 0.056
C 0.031 0.045 0.061 0.086 0.191 0.055
D 0.035 0.046 0.062 0.086 0.190 0.057
E 0.041 0.047 0.063 0.087 0.191 0.058

Table 9: Interaction Comparison
Mean Squared Error

Constant Linear Quadratic Cubic Beta

A 0.001 0.001 0.002 0.003 0.011
B 3.807 0.001 0.001 0.002 0.023
C 1.283 1.178 0.001 0.002 0.032
D 5.174 3.638 0.741 0.003 0.058
E 15.586 2.475 1.930 1.715 0.727

Standard Error
Constant Linear Quadratic Cubic Beta

A 0.019 0.026 0.031 0.035 0.055
B 0.021 0.026 0.031 0.035 0.056
C 0.020 0.028 0.031 0.035 0.055
D 0.023 0.031 0.032 0.035 0.057
E 0.027 0.029 0.034 0.038 0.058

Tables 10 and 11 illustrate how the error and precision of our method changes when the

precision parameter, s, and the number of quantiles, M , are varied. Table 10 shows that as

the s increases error is reduced, across all ‘true’ models. Precision, on the other hand, has

a U-shaped trend. Precision begins to improve as s increases, but after a point precision

starts to worsen. Table 11 shows that when there is no parametric ‘true’ relation between

CATE and x̃i M has little effect, but when the parametric relation is complex then higher M

becomes important. Precision generally seems to be little affected by M . As a high number

of M is computationally intensive a lower M is desirable, but this is perhaps advisable only

when the relation between x̃i M is simple.

The above show simulation results when our method used weights derived from the Beta

Distribution and uses a kernel estimator. Alternative weights and estimators can be used

(and are available in our Stata code). Table 12 compares estimations which use the Beta

Distribution, to more standard kernel weighting functions, Uniform, Triangular, Normal and

Epanechnikov. Results show that the Beta generally is less prone to error, but has lower
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Table 10: Alternative Precision, s
Mean Squared Error

5 10 50 100 500

A 0.109 0.052 0.011 0.007 0.009
B 0.302 0.133 0.023 0.011 0.009
C 0.760 0.264 0.032 0.016 0.012
D 1.737 0.570 0.058 0.031 0.026
E 1.890 1.563 0.727 0.511 0.240

Standard Error
5 10 50 100 500

A 0.099 0.067 0.055 0.058 0.081
B 0.115 0.073 0.056 0.058 0.081
C 0.110 0.071 0.055 0.058 0.081
D 0.118 0.075 0.057 0.059 0.081
E 0.107 0.071 0.058 0.060 0.083

Table 11: Different Quantiles, M
Mean Squared Error

10 20 50 100 500

A 0.004 0.004 0.006 0.011 0.016
B 0.082 0.029 0.016 0.023 0.028
C 0.171 0.071 0.033 0.032 0.032
D 0.510 0.205 0.082 0.058 0.052
E 1.006 0.816 0.740 0.727 0.730

Standard Error
10 20 50 100 500

A 0.045 0.047 0.051 0.055 0.055
B 0.046 0.048 0.052 0.056 0.056
C 0.046 0.047 0.052 0.055 0.055
D 0.046 0.048 0.053 0.057 0.056
E 0.049 0.050 0.054 0.058 0.057

levels of precision.22 Table 13 shows alternative forms of local estimator. Results show that

both error and precision are relatively constant across these different estimation models.23

Table 12: Alternative Kernel Weights
Mean Squared Error

Beta Uniform Triang. Normal Epan.

A 0.011 0.002 0.003 0.002 0.002
B 0.023 0.231 0.089 0.052 0.119
C 0.032 0.488 0.244 0.181 0.308
D 0.058 1.441 0.700 0.548 0.888
E 0.727 2.575 1.358 1.494 1.659

Standard Error
Beta Uniform Triang. Normal Epan.

A 0.055 0.032 0.034 0.033 0.033
B 0.056 0.035 0.036 0.035 0.035
C 0.055 0.033 0.035 0.034 0.034
D 0.057 0.036 0.037 0.036 0.036
E 0.058 0.041 0.040 0.039 0.040

Table 13: Local Estimator
Mean Squared Error

Kernel Linear LinearInt Quadratic QuadInt

A 0.011 0.010 0.013 0.009 0.027
B 0.023 0.020 0.016 0.019 0.030
C 0.032 0.029 0.021 0.029 0.034
D 0.058 0.056 0.038 0.055 0.047
E 0.727 0.733 0.738 0.731 0.498

Standard Error
Kernel Linear LinearInt Quadratic QuadInt

A 0.055 0.054 0.054 0.054 0.060
B 0.056 0.054 0.054 0.054 0.059
C 0.055 0.054 0.054 0.054 0.059
D 0.057 0.055 0.054 0.055 0.059
E 0.058 0.056 0.055 0.056 0.061

Finally, Table 14 uses a Monte-Carlo simulation to assess how our method performs with

small samples. The results, generally, are as expected the higher the sample size the lower

the error and the more precise the estimates are.

22As different measure of precision are used between these methods more analysis needs to be undertaken
to assess if this trend holds more generally.

23Perhaps where more complex estimation models would be useful is where lower M is desirable.
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Table 14: Sample Size
Mean Squared Error

50 100 500 1000 5000 10000

A 6.519 2.903 0.598 0.342 0.113 0.069
B 6.775 3.058 0.625 0.347 0.106 0.076
C 6.774 3.071 0.646 0.361 0.137 0.106
D 7.368 3.274 0.694 0.427 0.177 0.144
E 8.053 3.984 1.385 1.059 0.822 0.778

Standard Error
50 100 500 1000 5000 10000

A 1.683 1.308 0.654 0.475 0.222 0.162
B 1.724 1.335 0.663 0.482 0.225 0.164
C 1.702 1.319 0.659 0.479 0.225 0.163
D 1.747 1.348 0.671 0.488 0.228 0.167
E 1.847 1.417 0.698 0.506 0.235 0.169
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A.3 Alternative Beta Formulations

A.3.1 Variance

Within our method to estimate CATEs we make a particular assumption in relation to

variance. Here, we show an alternative assumption which could also be used. Rather than

assuming variance is dependent upon q∗j , we assume constant variance, as follows:

E[Qj] =
aj

aj + bj
= q∗j (22)

V ar[Qj] =
ajbj

(aj + bj)2(aj + bj + 1)
= s (23)

It follows that:

aj = q∗j

(
q∗j

(
1− q∗j
s

)
− 1

)
, bj =

(
q∗j

(
1− q∗j
s

)
− 1

)(
1− q∗j

)
(24)

This formulation ensures a constant variance; which could be a desirable property, par-

ticularly approaching the bounds. However, it runs into the issue that for particular values

of q∗j and s the values of aj and bj are negative. A constraint of the Beta distribution is

that aj, bj > 0, meaning that this formulation is often not feasible. An issue which does not

emerge with the assumption in the main model. If, however, this formulation is used it is

sufficient to ensure: s < q∗j (1 − q∗j ). This can be done by either selecting lower values of s

(the variance) or putting bounds on the q∗j at which the weights are centred on.

A.3.2 Dirichlet

While the Beta distribution specified focuses on one dimension at a time, the Dirichlet

distribution is multivariate beta distribution, which could be useful for determining weights

when the number of dimensions, k, is greater than one. In the paper and Stata code we

multiply different Beta distributions to establish weights, however, this is primarily due to

computational limitations because the CDF of the Dirichlet is not easily estimated in Stata.

It could, however, prove useful for future research. The formulation is as follows:

E[Qk] =
ak
a0

= q∗k (25)
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V ar(Qk) =
(ak(a0 − ak))
(a2

0(a0 + 1))
=

(q∗k(q
∗
0 − q∗k))
s

(26)

Where:

a0 =
K∑
k=1

ak, q∗0 =
K∑
k=1

q∗k

It follows that, ∀k:

q∗k(s− 1) = ak (27)

The resulting weights would be as follows:

wij =

∫
· · ·
∫

Vj

 1

B(a0j)

Kj∏
k=1

q̈
akj−1

kj

 dq̈1j . . . dq̈κj (28)

Where:

B(a0j) =

∏Kj

k=1 Γ(akj)

Γ
(∑Kj

k=1 akj

) , q̈Kj
= 1−

κj∑
k=1

q̈kj,

Vj =

{
(q̈1j, . . . , q̈κj) ∈ Rκj : rik −

1

2N
≤ q̈kj ≤ rik +

1

2N
,∀k ∈ [1, κj]

}
These weights are calculated for each individual, accounting for K dimensions of variables

(i.e. SES, age and weight), where κ = K − 1, at each jk quantile we wish to estimate the

weighted least-squares model at.
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A.4 Theory: RDD Decomposition

To show intuitively how decomposition analysis can be used with an RDD approach we start

with the basics. The standard RDD model is as follows:

y = β0 + Dβ1 + Zβ2 + (D′ × Z)β3 + u (29)

From this we can establish the Average Treatment Effect (ATE) at the discontinuity,

when Z→ 0. For E[y|Z = 0], the equation is:

E[y|Z = 0] = β0 + E[D]β1 (30)

β0 is the expected value of y for the control group, when Z = 0, while β1 is the expected

difference between control and treatment group (the ATE), when Z = 0. The expected y at

the discontinuity is then: β0 + β1E[D]; the expected value of y for the control group, plus

the ATE multiplied by the proportion of those who are treated.

This same analysis can be conducted using a decomposition approach. With two separate

equations, where the subscripts denote the control (0) and treated (1) group:

y0 = γ00 + Z0γ01 + u0 (31)

y1 = γ10 + Z1γ11 + u1 (32)

Comparing the two methods, γ00 = β0, γ10 = β0 + β1, γ01 = β2 and γ11 = β2 + β3. To

obtain the ATE the difference between control and treatment group, at the discontinuity,

needs to be taken:

E[y1|Z0,1 = 0]− E[y0|Z0,1 = 0] = γ10 − γ00 = β1 (33)

The benefit of the decomposition method is that we can decompose the ‘total’ ATE into

component parts if we include X variables and their interactions with Z:

y0 = δ00 + Z0δ01 + X0δ0j + (Z′0 ×X0)δ0k + u0 (34)

y1 = δ10 + Z1δ11 + X1δ1j + (Z′1 ×X1)δ1k + u1 (35)
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It follows that the ATE can be obtained as above. Then, if this equation is rearranged (by

subtracting and adding E[X1]δ0j from the third and fourth term, respectively) the distinct

coefficient, endowment and unexplained components can be observed:

E[y1|Z = 0]− E[y0|Z = 0] = δ10 − δ00 + E[X1]δ1j − E[X0]δ0j

= δ10 − δ00︸ ︷︷ ︸
Unexplained

+E[X1](δ1j − δ0j)︸ ︷︷ ︸
Coefficients

+ (E[X1]− E[X0])δ0j︸ ︷︷ ︸
Endowments

(36)

The ATE (at the discontinuity) is thus decomposed into three components.24 This is for

the average, in the sense that it looks to the average individual, but it concerns the treatment

effect at the time of the ban.

A.4.1 Two-Stage Extension

The above allows the average treatment effect to be decomposed. However, one issue emerges

which relates to the particular X variables, the ‘mechanism’ variables XM . By trying to

identify potential mechanisms through which the smoking ban reduced the total number

of hours exposed we include dummies indicating exposure in particular locations (i.e at

home and in the pub). Within the decomposed model the endowment component identifies

this effect. However, it identifies the difference between the expected values of the X ′s

(E[XM1]−E[XM0]) rather than the difference in the expected values, conditional on Z = 0

(E[XM1|Z = 0] − E[XM0|Z = 0]). The latter would allow for a causal interpretation of

the contribution to the ATE that the ‘mechanism’ variables have. In other words, that the

difference in expectation of the XM variables is caused by the intervention and this causal

difference is what contributes to the ATE.

In order to achieve this we propose a two-stage procedure. 1) Estimate X̂M |Z = 0; 2)

Plug in X̂M |Z = 0 and XM − X̂M |Z = 0 into the decomposition equation, in place of XM .

As follows:

24One issue with interpretation of the decomposition is that both the unexplained and coefficient com-
ponents are determined by how X is centred. The interpretation of the unexplained component has to be
the unexplained component at the point where all X = 0. If, then, X is mean centred about zero, for
whatever reason, then both the unexplained and coefficient components will change; the sum of those two
components and the endowment component will, however, remain the same. In our analysis (particularly as
the sign of the coefficient can easily switch if the X are mean centred) we do not mean centre, leaving the
interpretation as follows. The unexplained component is where all X = 0, while the coefficient components
can be interpreted at their mean. The exception to this is the forcing variable Z, which has to be centred
on zero; meaning that the unexplained component related to the average treatment effect at the time of the
ban and not elsewhere.
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Stage 1:

Separately estimate regressions for each ‘mechanism’ variable XM . With explanatory vari-

ables D, the treatment dummy, Z, time, XC , the control variables and their interactions:

XM = β0 + Dβ1 + Zβ2 + (D′ × Z)β3 + XCβ4 + u (37)

Predict X̂M |Z = 0, for each ‘mechanism’ variable.

Stage 2:

Run the decomposition analysis, plugging in the predicted variables, X̂M |Z = 0, and the

difference between the predicted values at Z = 0 and the observed ‘mechanism’ variables,

XM − X̂M |Z = 0, to estimate the control and treatment equations separately:25

y0 = λ00 + Z0λ01 + XC0λ0j + (Z′0 ×XC0)λ0k + (X̂M0|Z0 = 0)λ0m+

(XM0 − X̂M0|Z0 = 0)λ0n + (Z′0 × (XM0 − X̂M0|Z0 = 0))λ0p + u0 (38)

y1 = λ10 + Z1λ11 + XC1λ1j + (Z′1 ×XC1)λ1k + (X̂M1|Z1 = 0)λ1m+

(XM1 − X̂M1|Z1 = 0)λ1n + (Z′1 × (XM1 − X̂M1|Z1 = 0))λ1p + u1 (39)

Then decompose the expected differences between the control and treatment group, at the

discontinuity. Where, for notational ease: ATE = E[y1|Z = 0] − E[y0|Z = 0], (X̂M |Z =

0) = X̂M and (XM0 − X̂M |Z = 0) = X̃M :

ATE = λ10 − λ00 + E[XC1]λ1j − E[XC0]λ0j+

E[X̂M1]λ1m − E[X̂M0]λ0m + E[X̃M1]λ1n − E[X̃M0]λ0n

= λ10 − λ00︸ ︷︷ ︸
Unexplained

+E[XC1](λ1j − λ0j)︸ ︷︷ ︸
C.Coefficient

+ (E[XC1]− E[XC0])λ0j︸ ︷︷ ︸
C.Endowment

+

E[X̂M0](λ1m − λ0m)︸ ︷︷ ︸
M.Coefficient

+ (E[X̂M1]− E[X̂M0])λ0m︸ ︷︷ ︸
M.Endowment

+

E[X̃M1](λ1n − λ0n)︸ ︷︷ ︸
D.Coefficient

+ (E[X̃M1]− E[X̃M0])λ0n︸ ︷︷ ︸
D.Endowment

(40)

25Both are included to ensure that the linear combination of the two X̂M |Z = 0+XM−X̂M |Z = 0 = XM .
This allows data not to be lost and the effect that difference in the predicted ‘mechanism’ variable at the
discontinuity (interpreted as being caused by the smoking ban) has been separated out.
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For the purpose of estimating the endowment component, the mechanism endowment is

the component of the ATE which can be explained by the difference between the ‘mechanism’

variables, where this difference was caused by the intervention.

While this two-stage extension could help predict the causal mechanism components of

the ATE, it is reliant upon good estimation of X̂M . In our case, our predictions of X̂M

are not precise; meaning that this approach is perhaps not suitable. Moreover, as shown

in Table 6, time (the forcing variable) has very little effect on the ‘mechanism’ variables,

meaning that E[XM ] ≈ E[X̂M |Z = 0], negating the need for the two step procedure.
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A.5 Biomarker: Cotinine

The outcomes used in the main analysis are self-reported measures from the Health Survey for

England. One issue when individuals self-report is the potential for misreporting; individuals

may over or under report the outcome meaning that the observed outcome is different from

the true outcome. If this misreporting is not consistent between individuals and across time,

our estimated treatment effects could simply be due to a shift in misreporting, rather than

a genuine change in the true value.

Conveniently, within the survey a more objective measure of tobacco smoke exposure

is available. Cotinine levels are measured in a follow up nurses visit, derived from saliva

samples of respondents. Cotinine is the primary metabolite of nicotine and is a biomarker

of tobacco smoke exposure. By using cotinine, rather than self-reported levels of tobacco

smoke, we can identify if the observed treatment effects persist. One issue with the level of

continine, however, is that we cannot distinguish between active and passive smoke exposure

for those who are smokers (nor can we distinguish between cotinine derived from tobacoo

exposure or other sources of nicotine, such as replacement therapy). If we identify a drop in

cotinine levels, due to the ban, for smokers, we cannot identify if it is due to a drop in active

or passive smoke exposure. We can, however, identify this for non-smokers.

Table 15 shows results from the regression discontinuity design, which identifies the effect

of the smoking ban on cotinine levels for different populations: smokers, ever-smokers, ex-

smokers, non-smokers and all. The results are comparable to the treatment effects for the

self-reported outcomes, in Table 3. We observe that there is a significant drop in second-hand

smoke exposure, both for hours exposed and cotinine levels, for non-smokers. As mentioned

above, for smokers we cannot precisely disentangle active and passive smoke exposure; but

the results within different subgroups are suggestive of similar results in Table 3. In Table

3, we observe no effect of the ban on active smoking, here we similarly observe no significant

effect of the ban on cotinine levels for smokers. Similar results emerge for ever-smokers, ex-

smokers and all; where the effects are always negative, but not significant. This is suggestive

of a drop in passive smoke, but little reduction in cotinine levels through active smoking.

There are several issues with the cotinine variable which means we do not use it in

our main analysis. Firstly, the nurses visit only took place for a subset of the sample

(approximately 27.5% of the adult sample did not complete the nurses survey) and of those

interviewed 83.6% had a valid cotinine measure. Secondly, the nurses visits usually took place

after the main interview. While most took place within a month, the self-reported questions
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Table 15: RDD: Effects of the Ban on Cotinine Levels
(1) (2) (3) (4) (5)

Cotinine Cotinine Cotinine Cotinine Cotinine
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Treatment -33.9534 -17.4802 -9.5398 -5.6673∗∗ -10.8572
(26.4602) (15.8461) (9.2572) (2.5189) (9.2656)

Time 0.0043 -0.1336 -0.1208 0.0156 -0.1124
(0.1995) (0.1221) (0.0739) (0.0225) (0.0739)

Treatment X Time 0.0658 0.2524 0.2231∗∗ 0.0335 0.2153∗∗

(0.2667) (0.1643) (0.0989) (0.0279) (0.0988)
Constant 307.5716∗∗∗ 114.0129∗∗∗ 59.8176∗∗∗ 6.0500∗∗∗ 61.0719∗∗∗

(17.4393) (10.4726) (6.1453) (2.2843) (6.1678)

N 774 2066 3736 2975 3749
R-squared 0.0054 0.0029 0.0022 0.0022 0.0022
Sample Smokers Ever-Smokers Ex-Smokers Non-Smokers All
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

in the main interview are usually time dependent, meaning outcomes could potentially have

changed. The final issue relates to the extreme values of the variable. Cotinine levels follow

a poisson like distribution, with a modal spike of cotinine is at 0 (30.56%), but with a

maximum value of 986.2. These extreme values could bias the OLS estimates. To address

this, here, we run both poisson and negative binomial distribution regressions, and run the

RDD using log(cotinine+1); we find the same direction and significance levels of our results

as in Table 15, for each sub-population.
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A.6 Missing Income

Of 6,331 adults 1,421 observations are missing for equivalised income (22.45%) in 2007. To

recover these observations, we impute income for those missing. To do so, we regress log

equivalised income (henceforth income) on: household size, number of children, age, age

squared, sex, marriage status, ethnicity, urban, IMD quintile, savings/investments, benefits,

NS-SEC, Labour Market status, highest qualification, housing tenure and overcrowding. We

then predict income out-of-sample for the missing observations.

The left panel of Figure 7 shows the distribution of both observed (N = 4, 910) and

imputed (N = 1, 421) income. The graph highlights that the distributions are similar, but

as it typical with single imputation methods, the variance is lower for the imputed data.

While this could be an issue if income alone were used in our analysis, we use income as only

one of 31 variables to estimate socioeconomic status, using the principal component analysis.

As shown in the right panel of Figure 7 the distribution of SES for imputed and not as very

similar, due to the additional variation of the other 30 variables. Indeed, weights derived for

SES are very similar when using or not using the observations with imputed income. As a

result, we use the 1,421 individuals within the main analysis to increase sample size.

Figure 7: Log Equivalised Income and SES: Missing Income
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To show robustness to the inclusion of imputed data, the main analysis for the ATEs

and CATEs are shown below. Table 16 shows that the significance levels of the ATEs are

the same and the magnitudes are not significantly different from the main analysis. Figure 8

shows the the CATEs estimates are also very similar. Hence, in order to maintain statistical

power for our analyses we use the imputed data where necessary.

Table 16: RDD: Average Treatment Effects, No Imputed Income
(1) (2) (3) (4)

Smoker Packs Exposed Hours Exposed
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Treatment 0.0406 0.1404 -0.2610∗∗∗ -1.8355∗∗∗

(0.0393) (0.1377) (0.0296) (0.5157)
Time -0.0004 -0.0010 0.0002 -0.0017

(0.0003) (0.0010) (0.0002) (0.0042)
Treatment X Time 0.0005 0.0001 -0.0001 0.0054

(0.0004) (0.0014) (0.0003) (0.0056)
Constant 0.3570∗∗∗ 0.9169∗∗∗ 0.4412∗∗∗ 2.9864∗∗∗

(0.0265) (0.0912) (0.0224) (0.3872)

N 2711 2709 3792 3792
R-squared 0.0010 0.0008 0.0711 0.0106
Sample Ever-Smokers Ever-Smokers Non-Smokers Non-Smokers
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Figure 8: Conditional Average Treatment Effects, No Imputed Income
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A.7 Socioeconomic Status: Descriptive Statistics

Table 17 provides descriptive statistics which relate to our derived index of socioeconomic

status (SES). It summarises the mean values of demographic characteristics and individual

SES variables across the whole sample, conditional on a quantile of SES. Table 18 show this

information for the smoking outcomes for the control group only, split into smokers, ever-

smokers and non-smokers. These two tables highlight the relation between smoking outcomes

and SES, alongside the sample composition of different quantiles of SES. For demographic

characteristics this highlights who is in each quantile, while for the SES variables it reveals

how these variables interact to determine SES.

For demographics, we observe interesting trends, which indicate who has higher and

lower SES. As the measure is estimated conditional on age, the age variable is expected

to be relatively constant, however, we still observe particularly looking at the extremes 45

compared to 52, that those who are older, within their age group tend to have higher SES.

Females make up 67% in the poorest 5% compared to 42% in the highest 5%. Similarly those

who are poor are more likely to be single, non-white, from an urban setting and pregnant.

For the SES variables, while the SES is constructed with them, it is of interest to see how

our measure relates to these important variables and how they interact with one another.

To give the examples of the extremes. Those in the lowest 5% have the lowest income and

live in the areas with the lowest IMD. They receive no income from savings, but 90% receive

benefits. No individuals are in the managerial/professional class, while 38% are in routine

occupations and 24% have never been employed, with only 1% currently being employed.

There are 72% with no qualifications and none with a degree, while 96% of the group rent.

This is in stark contrast to the highest 5%, who earn the most and live in the best areas.

Those with earnings from savings are 68%, with less than 1% receiving any form of benefits.

91% are in managerial/professional occupations, with 99% either currently employed or

retired. Most, 72% have a degree, while 99% own their house.

The strength of this measure lies in the identification of those characteristics which are

important in determining SES. Moreover, it allows for the interactions and amalgamations

of these variables which determine where each individual is placed on a continuous index.

Table 18 shows, in general, there is a strong socioeconomic gradient for smoking. Those

with lower SES are more likely to smoke, be exposed and have been smokers in the past,

they also smoke more and are exposed for more hours. These self-reported measures follow
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Table 17: Socioeconomic Status: Descriptive Statistics
Low Quintiles High Summary

≤ 0.05 ≤ 0.1 Q1 Q2 Q3 Q4 ≥ 0.9 ≥ 0.95 Mean
Mean Mean Mean Mean Mean Mean Mean Mean Mean

Demographics
Age 45.38 49.26 49.84 52.29 48.99 49.57 50.61 52.28 50.35
Sex (1 = female) 0.67 0.66 0.65 0.59 0.52 0.48 0.44 0.42 0.56
SES 0.20 0.25 0.35 0.55 0.67 0.80 0.84 0.86 0.59
Married Couple 0.33 0.36 0.46 0.61 0.62 0.64 0.67 0.69 0.58
Ethnicity (1 = white) 0.81 0.83 0.84 0.86 0.92 0.95 0.95 0.96 0.90
Urban 0.92 0.91 0.88 0.80 0.74 0.69 0.68 0.66 0.77
Pregnant 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SES Variables
Log Equivalised Income 8.93 9.03 9.25 9.74 10.21 10.74 10.88 10.99 9.98
IMD Quintile 1.65 1.80 2.11 2.92 3.51 3.94 4.24 4.46 3.13
Savings & Investments 0.00 0.00 0.02 0.10 0.21 0.40 0.56 0.68 0.17
No Benefits 0.10 0.18 0.36 0.73 0.81 0.97 0.99 0.99 0.72
NS-SEC
- Higher Manager/Profess. 0.00 0.00 0.01 0.02 0.08 0.29 0.40 0.45 0.10
- Lower Manager/Profess. 0.00 0.01 0.04 0.13 0.30 0.50 0.49 0.46 0.23
- Intermediate 0.03 0.06 0.07 0.16 0.20 0.10 0.06 0.06 0.13
- Small Employ./Own Acc. 0.03 0.03 0.06 0.11 0.12 0.05 0.02 0.02 0.09
- Lower Superv./Tech. 0.05 0.08 0.10 0.13 0.12 0.01 0.01 0.00 0.08
- Semi-routine Occup. 0.25 0.26 0.31 0.26 0.12 0.03 0.01 0.01 0.19
- Routine Occup. 0.38 0.37 0.29 0.16 0.04 0.01 0.01 0.01 0.13
- Never Employed 0.24 0.17 0.11 0.02 0.01 0.00 0.00 0.00 0.03
Labour Market Status
- Employed 0.01 0.05 0.22 0.53 0.69 0.75 0.73 0.71 0.55
- Unemployed 0.06 0.05 0.04 0.01 0.00 0.00 0.00 0.00 0.01
- Retired 0.13 0.25 0.27 0.32 0.23 0.22 0.25 0.28 0.27
- Full Time Student 0.01 0.02 0.05 0.05 0.04 0.01 0.00 0.00 0.03
- Looking After Home 0.42 0.33 0.23 0.06 0.03 0.02 0.01 0.01 0.09
- Other Inactive 0.37 0.29 0.18 0.02 0.01 0.00 0.00 0.00 0.05
Highest Qualification
- Degree 0.00 0.01 0.03 0.09 0.18 0.50 0.66 0.72 0.20
- Higher Education 0.02 0.02 0.04 0.08 0.14 0.16 0.15 0.13 0.11
- A Level 0.02 0.03 0.07 0.09 0.20 0.13 0.08 0.05 0.12
- GCSE A*-C 0.16 0.15 0.19 0.26 0.27 0.18 0.10 0.09 0.22
- GCSE D-G 0.07 0.06 0.08 0.05 0.05 0.01 0.00 0.00 0.05
- Other 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.02
- None 0.72 0.72 0.58 0.41 0.15 0.02 0.00 0.00 0.29
Housing Tenure
- Own Outright 0.03 0.04 0.14 0.41 0.37 0.38 0.44 0.48 0.34
- Own - Mortgage/Loan 0.00 0.03 0.14 0.35 0.51 0.60 0.55 0.51 0.39
- Part Rent/Part Mort. 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
- Rent 0.96 0.92 0.71 0.22 0.09 0.02 0.00 0.00 0.25
- Live Rent Free 0.00 0.00 0.01 0.02 0.03 0.00 0.01 0.01 0.01
Overcrowding 1.25 1.19 1.17 1.01 0.90 0.73 0.67 0.63 0.94

the same trend as the cotinine. This negative relation is monotonic, with the exception that

the highest 5% seem to have higher levels of smoking outcomes, than the top 10%.

By moving between the panels of Table 18 we disentangle the social gradient of active and

passive smoking. Conditional on being a smoker, we observe U-shaped patterns. The poorest

quartile have higher smoking outcomes than the second quartile, but the third quartile
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have lower smoking outcomes than the richest. Indeed, the richest 5% have the highest

levels of cotinine. For ever-smnokers the steep monotone trend re-emerges when looking at

quartiles, but remains U-shaped when considering the richest 5%. Conditional on being a

non-smokers, we observe no relation between SES and the probability of being exposed or

having ever smoked. However, the number of hours exposed and cotinine levels maintain a

socioeconomic gradient. Conditional on being a smoker, the rich are much more likely to

smoke and be exposed in pubs; for non-smokers, however, the trend is less clear.

Table 18: Socioeconomic Status: Smoking Descriptive Statistics for Control Group
Low Quintiles High Summary

≤ 0.05 ≤ 0.1 Q1 Q2 Q3 Q4 ≥ 0.9 ≥ 0.95 Mean
Mean Mean Mean Mean Mean Mean Mean Mean Mean

All
Smoker 0.59 0.45 0.38 0.20 0.16 0.10 0.07 0.06 0.21
Packs Smoked Per Day 1.80 1.37 1.11 0.49 0.33 0.21 0.14 0.17 0.54
Exposed to Smoke 0.62 0.54 0.53 0.45 0.48 0.44 0.42 0.39 0.48
Hours Exposed to Smoke 11.85 9.02 8.71 4.64 4.22 2.70 2.08 2.18 5.09
Ever Smoked 0.77 0.73 0.70 0.59 0.58 0.54 0.54 0.53 0.60
Cotinine Levels 222.29 167.96 138.01 72.20 51.84 26.73 24.81 27.05 69.79
Smoke in Pubs 0.13 0.10 0.11 0.05 0.06 0.05 0.04 0.04 0.07
Exposed in Pubs 0.23 0.18 0.22 0.23 0.28 0.28 0.25 0.22 0.25

Smokers
Smoker 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Packs Smoked Per Day 3.04 3.04 2.89 2.43 2.07 2.15 2.04 2.67 2.55
Exposed to Smoke 0.76 0.71 0.73 0.64 0.69 0.79 0.92 1.00 0.71
Hours Exposed to Smoke 16.95 14.96 15.70 9.77 10.12 11.74 11.13 16.58 12.77
Ever Smoked 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cotinine Levels 329.84 337.36 342.91 312.71 277.56 279.35 353.07 438.50 314.81
Smoke in Pubs 0.22 0.23 0.29 0.25 0.39 0.54 0.61 0.58 0.33
Exposed in Pubs 0.30 0.26 0.31 0.28 0.41 0.59 0.65 0.50 0.35

Ever-Smokers
Smoker 0.77 0.62 0.55 0.34 0.28 0.18 0.13 0.12 0.35
Packs Smoked Per Day 2.34 1.89 1.59 0.83 0.57 0.39 0.26 0.32 0.90
Exposed to Smoke 0.71 0.62 0.61 0.49 0.55 0.49 0.47 0.45 0.54
Hours Exposed to Smoke 14.52 11.34 11.18 5.65 5.66 3.38 2.51 3.02 6.78
Ever Smoked 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cotinine Levels 273.39 221.58 191.80 113.58 84.99 49.43 45.27 48.53 112.79
Smoke in Pubs 0.17 0.14 0.16 0.08 0.10 0.10 0.08 0.07 0.11
Exposed in Pubs 0.30 0.23 0.28 0.24 0.33 0.34 0.29 0.26 0.29

Non-Smokers
Smoker 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Packs Smoked Per Day 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Exposed to Smoke 0.42 0.40 0.41 0.40 0.44 0.40 0.39 0.35 0.41
Hours Exposed to Smoke 4.61 4.24 4.43 3.33 3.10 1.73 1.40 1.20 3.04
Ever Smoked 0.44 0.50 0.51 0.49 0.50 0.49 0.50 0.50 0.50
Cotinine Levels 25.10 11.18 13.64 10.52 10.11 3.74 4.48 1.93 8.92
Smoke in Pubs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Exposed in Pubs 0.15 0.11 0.17 0.21 0.25 0.24 0.21 0.20 0.22
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A.8 Sensitivity of the Regression Discontinuity Design

This appendix shows sensitivity analyses which evaluate the robustness of the baseline results

of Table 3. Sensitivity analyses relating to bandwidth, functional form, model specification

and the inclusion of controls are conducted, alongside placebo timing tests.

A.8.1 Bandwidths, Functional Form, Model and Placebo Timing

While the regression discontinuity design is generally considered to have high levels of internal

validity (i.e. a high level of confidence that the observed effects are indeed causal) sensitivity

analysis should be conducted to identify if: A) the bandwidth chosen affects the estimated

effects, B) the functional form assumed changes the estimated effects, C) results are sensitive

to the regression model used and D) if similar effects exist if the discontinuity is moved. This

section will address these concerns for the main four variables.

Figure 9: Sensitivity of Average Treatment Effects: Forest Plots

Figure 9 shows forest plots of ATEs for: smokers, packs, exposed and hours exposed. Each

plot shows results from each of the sensitivity analyses. Across all four variables we observe

there are no significant differences between the baseline and any of the sensitivity analyses.
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For both smoker and packs we always observe that estimates are not significantly different

from zero. While effects for both exposed and hours exposed are consistently negative and

significant at the 5% level (with the exception of quadratic and bandwidth: 50 which are

still significant at the 10% level). These results show the direction and significance of the

baseline ATEs are robust to a host of sensitivity analyses.

The first sensitivity analysis involves moving the bandwidth within which the RDD is

estimated. In the main specification the bandwidth of 190 days (January to December

of 2007) used. However, if the RDD is valid the estimated effect should remain stable

for alternative bandwidth. Table 19 shows the ATEs for each of the main variables, at

bandwidths of 100, 50 and 30 days. Across all three bandwidths the sign, significance levels

and magnitudes remain similar across all four variables.

Table 19: Bandwidth Sensitivity
(1) (2) (3) (4)

Smoker Packs Exposed Hours Exp
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

TE (BW = 100) 0.0282 0.0880 -0.2372∗∗∗ -1.6923∗∗

(0.0513) (0.1772) (0.0389) (0.6923)

N 1737 1736 2485 2485

TE (BW = 50) 0.0344 0.1298 -0.3052∗∗∗ -1.5090∗

(0.0675) (0.2333) (0.0510) (0.9045)

N 1126 1125 1641 1641

TE (BW = 30) 0.0325 0.0946 -0.2655∗∗∗ -1.5225∗∗∗

(0.0437) (0.1511) (0.0329) (0.5872)

N 506 505 739 739
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

One issue with the RDD is that ATEs are often sensitive to the functional form assumed.

While our main model assumes a linear trend through time, it is possible that this trend is

non-linear. Assuming the trend is non-linear could, therefore, result in a biased estimate of

the ATE. To test this the functional form across time is relaxed. Table 20 show results from

three models. The first assume the trend over time is quadratic, while the second assumes

it is cubic. The third estimates the trend using a local-linear approach, a non-parametric

method (from the rdrobust command (Calonico et al., 2017)) which makes no assumptions

about the functional form of the time trend. Across each model, we obtain similar results to

our base model. The largest change appears to be for the cubic model, for hours exposed,

however, this effect is not significantly different from the other estimates.
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Table 20: Functional Form Sensitivity
(1) (2) (3) (4)

Smoker Packs Exposed Hours Exp
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

- Quadratic TE 0.0611 0.1597 -0.2587∗∗∗ -1.4583∗

(0.0558) (0.1927) (0.0423) (0.7502)

N 3299 3297 4693 4693

- Cubic TE -0.0184 0.0244 -0.3149∗∗∗ -2.1707∗

(0.0833) (0.2857) (0.0635) (1.1584)

N 3299 3297 4693 4693

- Local Linear TE 0.0500 0.1241 -0.2375∗∗∗ -1.4074∗∗∗

(0.0376) (0.1302) (0.0286) (0.5003)

N 3299 3297 4693 4693
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Ordinary least squares (OLS) is used throughout the main analysis. The reason for this

is for ease of interpretation of coefficients. However, other regression models may be better

suited at fitting the underlying structure of the data. Specifically, a probit model may be

better suited for the binary nature of the smoker and exposed variables, while for the packs

and hours exposed variables, a negative binomial model may better fit the skewed nature

of the data. Table 21 shows the ATEs for each of the four outcomes, for these alternative

models. The results are consistent with those in the main analysis.

Table 21: Regression Model Sensitivity
(1) (2) (3) (4)

Smoker Packs Exposed Hours Exposed
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Average Treatment Effect 0.0447 0.1055 -0.2277∗∗∗ -1.3924∗∗∗

(0.0350) (0.1208) (0.0270) (0.4523)

N 3299 3297 4693 4693
Sample Ever-Smokers Ever-Smokers Non-Smokers Non-Smokers
Model Probit Neg. Binomial Probit Neg. Binomial
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

A further concern relates to the timing of the discontinuity. It perhaps is chance that we

observe significant treatment effects at the time of the ban. To address this placebo tests,

which change the timing of the discontinuity can be used to assess if significant effects are

estimated when the ban did not take place. Table 22 shows results for a manipulation of

the date of the ban to plus and minus one and two months. Results show that there are

no significant effects at the placebo discontinuities at any of the timings, with the exception
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that in the month before the ban there is a smaller drop in the probability of being exposed.

These results are reassuring, but highlight there may be some anticipation of the ban in the

month before it took place.

Table 22: Alternative Timing Sensitivity
(1) (2) (3) (4)

Smoker Packs Exposed Hours Exp
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

TE (-60) 0.0053 -0.0726 -0.0331 -0.0103
(0.0392) (0.1352) (0.0274) (0.5419)

N 2870 2868 4101 4101

TE (-30) 0.0067 -0.0069 -0.1071∗∗∗ -0.5494
(0.0374) (0.1299) (0.0273) (0.4905)

N 3094 3092 4422 4422

TE (+-0) 0.0449 0.1076 -0.2281∗∗∗ -1.3846∗∗∗

(0.0351) (0.1220) (0.0266) (0.4729)

N 3299 3297 4693 4693

TE (+30) 0.0498 0.1053 -0.0327 -0.3554
(0.0350) (0.1200) (0.0284) (0.4800)

N 3117 3116 4448 4448

TE (+60) 0.0000 0.0856 -0.0017 0.2635
(0.0370) (0.1271) (0.0311) (0.4956)

N 2786 2785 3956 3956
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

A.8.2 Inclusion of Controls

The main model is a simple RDD model which does not include control variables. If the

RDD is valid then controls should have little effect on the average treatment effects esti-

mated. However, in the literature it is becoming more common to include controls within

the model; the reason being that controls can eliminate small sample bias, improve pre-

cision and can be useful in evaluating how plausible the identification strategy is (Imbens

and Lemieux, 2008). This appendix will show results from three alternative models which

include controls. The first adds control variables to the main model, the second explicitly

models heterogeneous treatment effects and predicts ATEs for the ‘average’ individual, while

the third uses decomposition analysis to assess the importance of the effect of differences in

covariates, rather than simply the presence of differences in covariates.

Table 23 shows results for the following model:

58



y = β0 + Dβ1 + Zβ2 + (D′ × Z)β3 + XCβC + u (41)

This model is the same as the main specification (Equation 6) with a vector of controls

XC and corresponding coefficients βC added. First, it allows for a comparison of the ATEs

with those in Table 3. The ATEs and their standard errors are very similar across packs,

exposed and hours exposed. This indicates robustness in the specification but also shows little

need to add the controls in the main specification as precision is not noticeably increased.

The exception to this is smoker. Unlike in the main specification, where we observe no

significant effect of the ban on smoking, here there is a positive effect. This implies that

the null ATEs of smoker are not robust. However, further analysis shows this result itself is

sensitive to the functional form of the regression discontinuity design. With each quadratic,

cubic and local-linear RDD designs, when controls are included, the ATEs are not significant.

Neither are there significant effects with the same specification with alternative bandwidths

of 100, 50 or 30 days. This implies that the observed result is an artefact of a misspecified

RDD model and random noise over the short period of time used. Indeed, when looking at

Figure 2 it is clear the ban neither had an effect on smoking in the short or long run.

The additional benefit of including controls are the gains explanatory power of the model

(note the R2) and the relation of the variables to the smoking outcomes. Results show that

age has little effect on smoking status, but middle aged individuals smoke more intensively

and older individuals are exposed to passive smoke less. Those who have a higher SES, are

female or are married are less likely to smoke, smoke less and are less likely to be exposed

to second-hand smoke. City dwellers and those who have smoked in the past are more likely

to be exposed and are exposed for more hours, while those who are pregnant are much less

likely to smoke.

Building upon Model 41, we can identify heterogeneity not only in the levels of the

smoking outcome, but in the treatment effect, by adding the interaction of the controls

variables with time, the treatment dummy and the time-treatment interaction:

y = β0 + Dβ1 + Zβ2 + (D′ × Z)β3 + XCβC1

+ (XC ×D)βC2 + (XC × Z)βC3 + (XC ×D′ × Z)βC4 + u (42)

By estimating this model we estimate CATEs βC2, for each control group (in addition

to the treatment effect for the reference group, β1). This allows for the prediction of ATEs,
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Table 23: RDD with Covariates
(1) (2) (3) (4)

Smoker Packs Exposed Hours Exposed
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Treatment 0.0730∗∗ 0.1617 -0.2063∗∗∗ -1.2182∗∗

(0.0318) (0.1139) (0.0256) (0.4742)
Time -0.0003 -0.0007 -0.0000 -0.0032

(0.0002) (0.0008) (0.0002) (0.0040)
Treatment X Time -0.0000 -0.0005 -0.0002 0.0025

(0.0003) (0.0011) (0.0003) (0.0050)
Age -0.0003 0.0418∗∗∗ -0.0065∗∗∗ -0.0799∗∗

(0.0026) (0.0091) (0.0021) (0.0405)
Age Squared -0.0001∗∗∗ -0.0005∗∗∗ 0.0000 0.0003

(0.0000) (0.0001) (0.0000) (0.0004)
SES -0.7190∗∗∗ -2.7035∗∗∗ -0.1870∗∗∗ -5.3248∗∗∗

(0.0433) (0.1734) (0.0412) (0.8709)
Sex (1 = female) -0.0265∗ -0.2425∗∗∗ -0.0806∗∗∗ -0.5579∗∗

(0.0157) (0.0561) (0.0130) (0.2340)
Married Couple -0.1106∗∗∗ -0.2735∗∗∗ -0.0775∗∗∗ -0.3379

(0.0173) (0.0600) (0.0139) (0.2295)
Ethnicity (1 = white) 0.0047 0.4162∗∗∗ 0.0169 0.9995∗∗∗

(0.0364) (0.1119) (0.0236) (0.3773)
Urban 0.0280 0.0571 0.0494∗∗∗ 0.5341∗∗

(0.0187) (0.0635) (0.0142) (0.2529)
Pregnant -0.2176∗∗∗ -0.1534 -0.0588 -1.0966

(0.0722) (0.2462) (0.0667) (0.7064)
Ever Smoked 0.0566∗∗∗ 1.0001∗∗∗

(0.0128) (0.2298)
Constant 1.0341∗∗∗ 1.7380∗∗∗ 0.8564∗∗∗ 8.1156∗∗∗

(0.0806) (0.2765) (0.0637) (1.2810)

N 3298 3296 4691 4691
R-squared 0.1850 0.1371 0.1420 0.0381
Sample Ever-Smokers Ever-Smokers Non-Smokers Non-Smokers
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

for the ‘average’ individual in the sample (who has (XC = E[XC ]) at the time of the ban.

This model aims to remove selection bias from the estimates.26 Table 24 shows the results

from these predictions, where ATE = β̂1 +
∑

C(E[XC ]β̂C2). The results are consistent with

those in Table 3 and 23.

An alternative approach is to use the RDD within a decomposition analysis framework.

As shown in Equations (14), (15) and (16) the ATE can be decomposed into coefficient,

endowment and unexplained effects:

26If, for example, there were a greater number of males just before the discontinuity then, as being female
is negatively correlated with exposure, by using the standard RDD model the treatment effect would be
biased downward. By estimating CATEs, then predicting the ATE for the ‘average’ individual then this
selection bias is circumvented.
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Table 24: RDD Prediction Using Conditional Average Treatment Effects
(1) (2) (3) (4)

Smoker Packs Exposed Hours Exposed
Coef./S.E. Coef./S.E. Coef./S.E. Coef./S.E.

Treatment 0.0701∗∗ 0.1588 -0.2020∗∗∗ -1.2152∗∗

(0.0320) (0.1155) (0.0258) (0.4859)

N 3298 3296 4691 4691
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

E[y1|Z = 0]− E[y0|Z = 0] = E[X1](β1 − β0)︸ ︷︷ ︸
Coefficients

+ (E[X1]− E[X0])β0︸ ︷︷ ︸
Endowments

+ β10 − β00︸ ︷︷ ︸
Unexplained

(43)

In the equations that follow (unlike in Table 7 where location exposed variables are in-

cluded) the X variables include only the control variables. Of interest here is the endowment

component, (E[X1]−E[X0])β0, of each control variable. This shows not if there is a signifi-

cant expected difference in control variables between the control and treatment groups, but

if the difference is likely to contribute a significant amount to the ‘total’ ATE. As shown in

Table 25, the endowment components are small and statistically insignificant for all control

variables, across all four models. This provides additional assurance that it is not due to

differences in covariates that we observe ATEs.

One limitation of the above approaches is that while they account for issues relating

to observable characteristics, they do not eliminate the possibility that unobservable char-

acteristics may prove problematic. However, standard RDD designs simply look to ensure

there are no differences in observable control variables at the discontinuity, then assume the

same to be true for unobservables. Unobservables could, therefore, be equally problematic

in the the simple model. The benefit of the models proposed here is they aim to address the

problems caused by observables, rather than admit defeat and not use an RDD.
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Table 25: RDD Decomposed, with Covariates Alone
(1) (2)

Smoker Packs
Endowments Coefficients Endowments Coefficients

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Time -0.039 (0.380) 0.072 (0.283) 0.501 (1.255) 0.572 (1.008)
Controls
Age 0.006 (0.008) -0.357 (0.590) 0.036 (0.040) 0.062 (2.025)
Age Squared -0.009 (0.012) 0.156 (0.307) -0.042 (0.049) -0.107 (1.036)
Sex (1 = female) -0.000 (0.001) 0.012 (0.034) 0.002 (0.003) -0.014 (0.122)
Married Couple -0.002 (0.003) -0.010 (0.041) -0.004 (0.005) -0.221 (0.149)
Ethnicity (1 = white) -0.001 (0.001) -0.045 (0.138) 0.002 (0.003) 0.242 (0.410)
Urban -0.002 (0.002) -0.062 (0.064) -0.004 (0.007) 0.034 (0.223)
Pregnant 0.000 (0.001) -0.003 (0.004) 0.001 (0.003) -0.001 (0.014)
Ever Smoked 0.000 (.) 0.000 (.) 0.000 (.) 0.000 (.)

Unexplained 0.385 (0.320) 0.183 (1.094)

Component Effects -0.009 (0.006) -0.308 (0.319) -0.010 (0.015) -0.003 (1.108)
Total Effect 0.068* (0.034) 0.169 (0.120)
Time Controls YES YES
N 3298 3296

(1) (2)
Exposed Hours Exposed

Endowments Coefficients Endowments Coefficients
Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Time 0.367 (0.290) -0.286 (0.211) -3.897 (6.039) 3.492 (5.145)
Controls
Age -0.001 (0.003) -0.392 (0.446) 0.012 (0.037) -9.815 (8.520)
Age Squared -0.001 (0.002) 0.358 (0.229) -0.014 (0.047) 5.446 (4.328)
Sex (1 = female) -0.000 (0.001) 0.030 (0.029) -0.001 (0.006) -0.120 (0.561)
Married Couple 0.001 (0.001) 0.020 (0.035) 0.003 (0.008) 0.638 (0.513)
Ethnicity (1 = white) 0.002 (0.002) -0.192∗∗ (0.088) 0.015 (0.022) -0.125 (1.178)
Urban 0.000 (0.000) 0.067 (0.045) 0.006 (0.011) 0.544 (0.885)
Pregnant -0.000 (0.001) 0.001 (0.003) -0.004 (0.008) 0.028 (0.029)
Ever Smoked -0.000 (0.000) -0.008 (0.026) 0.000 (0.002) 0.315 (0.498)

Unexplained -0.089 (0.228) 1.921 (4.316)

Component Effects -0.000 (0.006) -0.115 (0.227) 0.017 (0.033) -3.089 (4.316)
Total Effect -0.204*** (0.026) -1.151* (0.484)
Time Controls YES YES
N 4691 4691
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.9 Conditional Average Treatment Effects: Sensitivity

Within the main analysis, we estimate Conditional Average Treatment Effects (CATEs).

These effects are estimated conditional on age-specific socioeconomic status (an index we

derive), using our approach, which uses the Beta distribution to derive weights within a

linear regression discontinuity framework. To identify how sensitive the estimates for CATEs

are, this appendix will show results for different conditional variables, estimation methods

and regression discontinuity designs.

A.9.1 Socioeconomic Status Sensitivity

To identify if effects are sensitive to the choice of conditional variable five alternative variables

are used within separate estimations. The five alternatives are socioeconomic status (SES),

log equivalised income (income), the Index of Multiple Deprivation (IMD), the National

Statistics Socio-economic Classification (NS-SEC) and the highest level of qualification. SES:

Alternative is similar to our SES variable; it is estimated using principal component analysis

using the same variables (shown in Table 1), however it is estimated for the whole population,

not separately for each age group. The log equivalised income is derived in the survey, IMD

is discretised into quantiles (by the survey), while the NS-SEC and highest qualification

variables are discrete categories as shown in Table 1. To allow comparability between discrete

and continuous variables, for the discrete variables the graphs shown use quantiles within

that discrete category, resulting in the horizontal size of each category corresponding to the

proportion of the sample within that category. The quantiles are ordered to have the ‘lowest’

category at the bottom; so NS-SEC categories are ordered from Never Employed to Higher

Manager/Professional, while highest qualification begins at None and ends with Degree.

For both active smoking variables, smoker and packs, the non-significance of the SES:

Age results hold across the five alternative measures; so for conciseness these results are

not shown. Results for passive smoking variables, exposed and hours exposed, are shown

in Figure 10 and 11, respectively. In Figure 10 the magnitude, significance and nature of

heterogeneity appear very similar across all alternative variables. Effects for those at the

lowest quantiles are either small or insignificant, while the effects become stronger as the

quantile increases. The exception to this is that those with the highest qualifications how

smaller effects than those with A Levels. The effects also appear slightly higher for those at

the higher quantiles of income, compare to those higher quantiles of SES. In Figure 10 we

observe similar effects for SES, SES: Alternative, income and IMD. However, the effects are
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less similar for NS-SEC and highest qualification. In general, we observe that the precision of

the estimates is lower for the discrete categories, in comparison to the continuous variables.

Figure 10: Conditional Average Treatment Effects: Exposed

Figure 11: Conditional Average Treatment Effects: Hours Exposed
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A.9.2 Method Sensitivity

The main analysis estimates CATEs using our method which uses the Beta distribution to

derive weights for each individual. However, alternative methods can be used to estimate

these effects. We will focus on the hours exposed outcome to illustrate these different meth-

ods. First, two entirely separate methods: dummy interaction models, with varying number

of interactions, and parametric interaction models, with varying degrees of freedom. Sec-

ond, within the non-parametric framework estimations using different weighting functions

(Beta: Constant, Uniform, Triangular, Normal and Epanechnikov) and different degrees of

precision, s, within the Beta weighting function.

First, Figure 15 shows the comparisons of two, five, ten, twenty and fifty dummy inter-

actions with our method. This method allows conditional effects to be non-parametric, as

they are separately estimated for groups within particular quantiles. The trade-off with the

dummy interaction model is that for low numbers of interactions the underlying heterogene-

ity may be missed, while for high number of interactions precision of the estimates is much

reduced. Results do, however, seem consistent with our method, however, our method is

able to capture heterogeneity, with relatively high precision, and with a smooth curve.

Figure 12: Conditional Average Treatment Effects: Dummy Interaction
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Figure 13 shows an alternative method, interacting standard RDD model with socioeco-

nomic status. The base case, no interaction (the same as the average treatment effect) is

compared to linear, quadratic and cubic interaction terms. Each additional polynomial de-

gree adds flexibility to the estimation. The cubic model closely resembles the non-parametric

estimations of our model, while each lesser degree is removes the flexibility to estimate as

accurately. We do, however, observe that precision of the estimates decreases as the higher

degree terms are added.

Figure 13: Conditional Average Treatment Effects: Interaction

When we estimate CATEs a particular weighting function, for each local regression,

has to be assumed. We derive equations for and use the Beta distribution as the weighting

function within our main model. To test if the estimated effects are sensitive to this choice of

weighting function we estimate results for the Beta: Constant, Uniform, Triangular, Normal

and Epanechnikov. The latter four are common weighting functions, used within the kernel

estimation and local-linear regression literature, while the first uses an alternative assumption

relating to variance (see Appendix A.3). Results in Figure 14 show that the weighting

function used has little impact of the shape of the CATE curve. It does, however highlight

several differences. The uniform, and to some extent triangular, weighting functions give less

smooth estimates. Other weighting functions also struggle to estimate effects close to the

bounds. Here, we plot the CATEs against the expected weighted rank (
∑N

i (wjiri)/
∑N

i (wi))
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of each quantile, which is the empirical quantile of the conditional variable. The Beta function

is most capable of approaching the bounds (with the expected weighted rank). However, as

observed it is still prone to loss of precision close to the bounds.

Figure 14: Conditional Average Treatment Effects: Different Weights

Given that the Beta distribution is assumed as the weighting function the precision

parameter, s, still has to be chosen. This choice of parameter is common within the non-

parametric literature, within the above other mentioned weighting functions the ‘bandwidth’

similarly has to be chosen. Figure 15 illustrates the consequences of the choice. A trade-

off between smooth curves with tighter confidence intervals, for lower precision parameters,

and estimates with less bias, for higher precision parameters, emerges. Higher precision

parameters give much lower weight to those far away from the quantile of interest, meaning

less data is effectively used in each estimation, while lower precision parameters give more

uniform weights, hence providing more power. Regardless of the precision parameter we do,

however, observe a similar trend in the CATEs.

While alternative methods, weighting functions and precision parameters can be used to

estimate CATEs, the results estimated here seem relatively robust to these alternatives.
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Figure 15: Conditional Average Treatment Effects: Precision

A.9.3 RDD Sensitivity

Within the main estimation the regression discontinuity design assumes linearity across the

forcing variable, time. To test how sensitive the estimates CATEs are to this assumption

Figure 16 show results where no time trend is assumed and Figure 17 where a quadratic

term is used.

In general, the results are similar. There is no significant effect for smoker or packs across

the majority of socioeconomic status (SES) and significant reductions for both exposed and

hours exposed. For exposed, the size of the effect increases with SES, while for hours exposed

we observe larger effects are for those who are poor (but not extremely poor) compared to

those with the highest SES. What is clear, however, is the results for the poorest are sensitive

to the functional form assumed. The reason for this is a greater heterogeneity amongst the

very poor, meaning that average levels of the outcome, in each time period, are noisier. The

estimate of the time trend is, therefore, sensitive to the functional form assumed. More

observations, more often, would however address this issue.
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Figure 16: Conditional Average Treatment Effects: No Time

Figure 17: Conditional Average Treatment Effects: Quadratic Time
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